精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形的边长为1EF分别是的中点,EF于点D,现沿SESFEF把这个正方形折成一个四面体,使三点重合,重合后的点记为G,则在四面体中必有(

A.平面EFG

B.设线段SF的中点为H,则平面SGE

C.四面体的体积为

D.四面体的外接球的表面积为

【答案】ABD

【解析】

对选项折成四面体后,,由此能证明平面;对选项,证明SE,即得证;对选项,求出四面体的体积为,即得解;对选项,求出三棱锥的外接球的半径为,即得解.

对选项在折前正方形中,

折成四面体后,

平面平面

所以选项正确.

对选项,

对选项,连接因为,,

所以,

因为平面,平面,

所以平面SGE.

所以选项正确.

对选项,

前面已经证明平面,

所以是三棱锥的高,且.

由题得

所以.

所以

所以四面体的体积为.

所以选项错误.

对选项,由于,

所以可以把三棱锥放到长方体模型之中,长方体的三条棱为,

所以三棱锥的外接球的直径.

所以选项正确.

故选:ABD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求的单调性和极值;

(Ⅱ)若函数至少有1个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明201910月、11月国外已经存在新冠肺炎病毒),人传人,传播快,传播广,病亡率高,对人类生命形成巨大危害.在中华人民共和国,在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数3869).然而,国外因国家体制、思想观念与中国的不同,防控不力,新冠肺炎疫情越来越严重.据美国约翰斯·霍普金斯大学每日下午6时公布的统计数据,选取56日至510日的美国的新冠肺炎病亡人数如下表(其中t表示时间变量,日期“56“57对应于t=6"t=7",依次下去),由下表求得累计病亡人数与时间的相关系数r=0.98.

1)在56~10日,美国新冠肺炎病亡人数与时间(日期)是否呈现线性相关性?

2)选择对累计病亡人数四舍五入后个位、十位均为0的近似数,求每日累计病亡人数y随时间t变化的线性回归方程;

3)请估计美国511日新冠肺炎病亡累计人数,请初步预测病亡人数达到9万的日期.

:回归方程中斜率和截距最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.由集合P中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的水滴”.给出下列结论:

水滴图形与y轴相交,最高点记为A,则点A的坐标为

②在集合P中任取一点M,则M到原点的距离的最大值为3

③阴影部分与y轴相交,最高点和最低点分别记为CD,则

④白色水滴图形的面积是.

其中正确的有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)直线轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国女排,曾经十度成为世界冠军,铸就了响彻中华的女排精神.女排精神的具体表现为:扎扎实实,勤学苦练,无所畏惧,顽强拼搏,同甘共苦,团结战斗,刻苦钻研,勇攀高峰.女排精神对各行各业的劳动者起到了激励、感召和促进作用,给予全国人民巨大的鼓舞.

1)看过中国女排的纪录片后,某大学掀起“学习女排精神,塑造健康体魄”的年度主题活动,一段时间后,学生的身体素质明显提高,将该大学近5个月体重超重的人数进行统计,得到如下表格:

月份x

1

2

3

4

5

体重超重的人数y

640

540

420

300

200

若该大学体重超重人数y与月份变量x(月份变量x依次为12345…)具有线性相关关系,请预测从第几月份开始该大学体重超重的人数降至10人以下?

2)在某次排球训练课上,球恰由A队员控制,此后排球仅在A队员、B队员和C队员三人中传递,已知每当球由A队员控制时,传给B队员的概率为,传给C队员的概率为;每当球由B队员控制时,传给A队员的概率为,传给C队员的概率为;每当球由C队员控制时,传给A队员的概率为,传给B队员的概率为.为经过n次传球后球分别恰由A队员、B队员、C队员控制的概率.

i)若B队员控制球的次数为X,求

ii)若,证明:为等比数列,并判断经过200次传球后A队员控制球的概率与的大小.

1:回归方程中斜率和截距的最小二乘估计公式分别为:.

2:参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,点上一点,且线段的中点坐标为.

1)求抛物线的标准方程;

2)若为抛物线上的两个动点(异于点),且,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Cab0)的焦距为2,且过点.

1)求椭圆C的方程;

2)已知△BMN是椭圆C的内接三角形,若坐标原点O为△BMN的重心,求点O到直线MN距离的最小值.

查看答案和解析>>

同步练习册答案