精英家教网 > 高中数学 > 题目详情

一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:

 
转速x(转/秒)
16
14
12
8
每小时生产有缺点的零件数y(件)
11
9
8
5
 
画出散点图,并通过散点图确定变量y对x是否线性相关;
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)

(1) 根据题意,描出点可得到散点图:

有线性相关关系
(2) y=0.7286x-0.8571
(3)14.9013转/秒内

解析试题分析:解(1)根据题意,描出点可得到散点图:

根据图象可知点基本都分布在一条直线附近,故具有线性相关关系--6分
(2)由于根据数据可知,则可知b=0.7286,a=-0.8571故可知y=0.7286x-0.8571  10分
(3)由实际生产中,允许每小时的产品中有缺点的零件最多为10个,则可知,即 解得x14.9013
所以机器的运转速度应控制14.9013转/秒内   13分
考点:散点图
点评:主要是考查了散点图以及线性回归方程的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了解今年某校高三毕业班准备报考飞行员学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为,其中第二小组的频数为12.

(1)求该校报考飞行员的总人数;
(2)以这所学校的样本来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以(单位:t,100≤≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将T表示为的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

届亚运会于 日至日在中国广州进行,为了做好接待工作,组委会招募了 名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.
根据以上数据完成以下列联表:

 
喜爱运动
不喜爱运动
总计

10
 
16

6
 
14
总计
 
 
30
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有 人会外语),抽取名负责翻译工作,则抽出的志愿者中人都能胜任翻译工作的概率是多少?
附:K2=
P(K2≥k)
0.100
0.050
0.025
0.010
0.001
k
2.706
3.841
5.024
6.635
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的
频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,
1 500)).

(1)求居民收入在[3 000,3 500)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一般来说,一个人脚掌越长,他的身高就越高。现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)作为样本如下表所示.

(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程
(2)若某人的脚掌长为,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一段时间内,某种商品价格(万元)和需求量之间的一组数据为:

价 格
1.4
1.6
1.8
2
2.2
需求量
12
10
7
5
3
(1)进行相关性检验;
(2)如果之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01
参考公式及数据:
相关性检验的临界值表:
n-2
1
2
3
4
5
6
7
8
9
10
小概率0.01
1.000
0.990
0.959
0.917
0.874
0.834
0.798
0.765
0.735
0.708

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下联表:

 
优秀
非优秀
合计
甲班
30
 
 
乙班
 
50
 
合计
 
 
200
已知全部200人中随机抽取1人为优秀的概率为
(1)请完成上面联表;
(2)根据列联表的数据,能否有的把握认为“成绩与班级有关系”
(3)从全部200人中有放回抽取3次,每次抽取一人,记被抽取的3人中优秀的人数为,若每次抽取得结果是相互独立的,求的分布列,期望和方差
参考公式与参考数据如下:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
(1)填充频率分布表的空格(将答案直接填在表格内);

分组
频数
频率
50.5~60.5
4
0.08
60.5~70.5
 
0.16
70.5~80.5
10
 
80.5~90.5
16
0.32
90.5~100.5
 
 
合计
50
 
(2)补全频数条形图;

(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人。

查看答案和解析>>

同步练习册答案