精英家教网 > 高中数学 > 题目详情
14.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,则双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的离心率是(  )
A.2B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.3

分析 利用椭圆的离心率求出ab关系式,然后求解双曲线的离心率即可.

解答 解:椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,
可得$\frac{c}{a}=\frac{1}{2}$,
即:$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}=\frac{1}{4}$,可得$\frac{{b}^{2}}{{a}^{2}}=\frac{3}{4}$,
在则双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$中,由$\frac{{b}^{2}}{{a}^{2}}=\frac{3}{4}$,即$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{3}{4}$,
可得$\frac{{c}^{2}}{{a}^{2}}=\frac{7}{4}$,∴e=$\frac{\sqrt{7}}{2}$.
故选:C.

点评 本题考查一的简单性质以及双曲线的简单性质的应用,圆锥曲线的综合应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,已知a=2$\sqrt{2}$,b=2$\sqrt{3}$,A=45°,求c,B,C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中,正确的个数为(  )
①线性回归方程对应的直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$至少经过其样本数据点(x1,y1),(x2,y2)…(xn,yn)中的一个点;
②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
③在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好;
④线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;
⑤残差平方和越小的模型,拟合的效果越好;
⑥随机误差e是衡量预报精确度的一个量,它满足E(e)=0.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若向量$\overrightarrow p,\overrightarrow q$满足$|\overrightarrow p|=8,|\overrightarrow q|=6,\overrightarrow p•\overrightarrow q=24$,则$\overrightarrow p$和$\overrightarrow q$的夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图.在正三棱柱ABC-A1B1C1中,点D在棱BC上,AD⊥C1D.
(1)求证:平面C1AD⊥平面B1BCC1
(2)求证:A1B∥平面C1AD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆C1的方程是${(x-3)^2}+{y^2}=\frac{4}{25}$,圆C2的方程是$(x-3-cosθ{)^2}+(y-sinθ{)^2}=\frac{1}{25}(θ∈R)$,过C2上任意一点P作圆C1的两条切线PM,PN,切点分别为M、N,则∠MPN的最大正切值是$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在如图所示的茎叶图所表示的数据中,中位数是26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.两平行线3x-4y-12=0与6x+ay+16=0间的距离是(  )
A.$\frac{28}{5}$B.4C.$\frac{14}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正方体ABCD-A1B1C1D1中,点E,F,G,H,K,M分别棱AB,BC,CC1,C1D1,A1D1,A1A的中点,如图,求证:EF,GH,KM共面.

查看答案和解析>>

同步练习册答案