精英家教网 > 高中数学 > 题目详情

设C是椭圆:上任意一点,A、B是焦点,则在∆ABC中有:,类似地,点C是双曲线任意一点,A、B是两焦点,则∆ABC中有____________

 

【答案】

【解析】解:利用正弦定理,结合椭圆的定义,我们知道

同理在双曲线中,我们利用双曲线的定义可以知道,

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断
OM
OL
是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•深圳一模)已知椭圆C 的中心为原点O,焦点在x 轴上,离心率为
3
2
,且点(1,
3
2
)
在该椭圆上.
(1)求椭圆C的方程;
(2)如图,椭圆C 的长轴为AB,设 P 是椭圆上异于 A、B 的任意一点,PH⊥x轴,H为垂足,点Q 满足
PQ
=
HP
,直线AQ与过点B 且垂直于x 轴的直线交于点M,
BM
=4
BN
.求证:∠OQN为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=8x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
6

(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆E:数学公式的右焦点F2与抛物线y2=8x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且数学公式
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求数学公式的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市育才中学高三(下)3月段考数学试卷(理科)(解析版) 题型:解答题

如图,椭圆E:的右焦点F2与抛物线y2=8x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求的最大值.

查看答案和解析>>

同步练习册答案