精英家教网 > 高中数学 > 题目详情
19.若n∈N*,则1+2+22+23+…+2n+1=(  )
A.A2n+1-1B.2n+2-1C.$\frac{(n+2)(1+{2}^{n+1})}{2}$D.$\frac{(n+1)(1+{2}^{n+1})}{2}$

分析 利用等比数列的前n项和公式求解.

解答 解:∵n∈N*
∴1+2+22+23+…+2n+1=$\frac{1-{2}^{n+2}}{1-2}$=2n+2-1.
故选:B.

点评 本题考查等比数列的前n项和的求法,是基础题,解题时要注意等比数列性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,又f(x)≥2x对一切x∈R都成立,则a+b=110.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数$f(x)={log_2}(\frac{1+ax}{1-x})$,若$f(\frac{1}{3})=1$
(1)求f(x)的解析式并判断其奇偶性;
(2)当x∈[-1,0)时,求f(3x)的值域;
(3)已知函数$g(x)={log_{\sqrt{2}}}\frac{k}{1-x}$,若存在$x∈[\frac{1}{2},\frac{2}{3}]$使不等式 f(x)>g(x)成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:f(x)=ax2-ax-2
(1)?x∈R,使f(x)≤0恒成立,求实数a的取值范围;
(2)?x∈R,使f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,则cos2θ=$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正三棱锥P-ABC中,底边AB=8,顶角∠APB=90°,则过P、A、B、C四点的球体的表面积是(  )
A.384πB.192πC.96πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.几何体的三视图如右图所示,则该几何体的体积为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方程$\sqrt{(x-6)^{2}+{y}^{2}}$+$\sqrt{(x+6)^{2}+{y}^{2}}$=20化简的结果是$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{64}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=logacos(2x-$\frac{π}{3}$)(其中a>0且a≠1).
(1)求f(x)的单调区间.
(2)试确定f(x)的奇偶性和周期性.

查看答案和解析>>

同步练习册答案