解:设P(x1,y1),y0 x0 =k,则y0=kx0,∵PQ中点为M(x0,y0),∴Q(2x0-x1,2y0-y1)∵P,Q分别在直线x+2y-1=0和x+2y+3=0上,∴x1+2y1-1=0,2x0-x1+2(2y0-y1)+3=0,
∴2x0+4y0+2=0即x0+2y0+1=0,∵y0=kx0,∴x0+2kx0+1=0即x0="-1" /1+2k ,又∵y0>x0+2,代入得kx0>x0+2即(k-1)x0>2即(k-1)(-1 1+2k )>2即5k+1 /2k+1 <0∴-1 /2 <k<-1 /5