【题目】甲、乙两人玩游戏,游戏规则如下面的程序框图所示,求甲胜的概率.
【答案】
【解析】
根据古典概型,记A1,A2,A3表示3个红球,B表示1个白球,则取出一个球不放回,再取出一个球有12个基本事件,其中甲胜包含6个基本事件,故可求出甲胜的概率.
根据程序框图可知,甲、乙两人玩游戏的规则是:从装有3个红球和1个白球的袋中任意取出1个球后不放回,再任意取出1个球,若取出的两球不同色,则甲胜,否则乙胜.
记A1,A2,A3表示3个红球,B表示1个白球,则取出一个球不放回,再取出一个球有12个基本事件:A1A2,A1A3,A1B,A2A1,A2A3,A2B,A3A1,A3A2,A3B,BA1,BA2,BA3.
其中甲胜包含6个基本事件:A1B,A2B,A3B,BA1,BA2,BA3.
故甲胜的概率P==.
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)求的值;
(Ⅱ)若函数在区间上是单调递增函数,求实数的最大值;
(Ⅲ)若关于的方程在区间内有两个实数根,分别求实数与的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且此函数图象过点(1,5).
(1)求实数m的值;
(2)判断f(x)奇偶性;
(3)讨论函数f(x)在[2,+∞)上的单调性?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={(x,y)|f(x,y)=0},若对任意P1(x1 , y1)∈M,均不存在P2(x2 , y2)∈M使得x1x2+y1y2=0成立,则称集合M为“好集合”,下列集合为“好集合”的是( )
A.M={(x,y)|y﹣lnx=0}
B.M={(x,y)|y﹣x2﹣1=0}
C.M={(x,y)|(x﹣2)2+y2﹣2=0}
D.M={(x,y)|x2﹣2y2﹣1=0}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是 的中点.(12分)
(Ⅰ)设P是 上的一点,且AP⊥BE,求∠CBP的大小;
(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知斜率为的直线与椭圆C:交于A、B两点,线段AB的中点为M(),(m)。
(1)证明:;
(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com