精英家教网 > 高中数学 > 题目详情

【题目】如图,BAC的中点,P是平行四边形BCDE内(含边界)的一点,且.有以下结论:

①当x=0时,y∈[2,3];

②当P是线段CE的中点时,

③若x+y为定值1,则在平面直角坐标系中,点P的轨迹是一条线段;

xy的最大值为﹣1;

其中你认为正确的所有结论的序号为_____

【答案】②③④

【解析】

利用向量共线的充要条件判断出错,对;利用向量的运算法则求出,求出xy判断出对,利用三点共线解得④对

对于①当,据共线向量的充要条件得到P在线段BE上,故1≤y≤3,故①错

对于②当P是线段CE的中点时,

故②对

对于③x+y为定值1时,ABP三点共线,又P是平行四边形BCDE内(含边界)的一点,故P的轨迹是线段,故③对

对④,,令,则,当共线,则,当平移到过B时,xy的最大值为﹣1,故④对

故答案为②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:):男生成绩在175以上(包括175)定义为“合格”,成绩在175以下(不包括175)定义为“不合格”.女生成绩在165以上(包括165)定义为“合格”,成绩在165以下(不包括165)定义为“不合格”.

(1)求五年一班的女生立定跳远成绩的中位数;

(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;

(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用表示其中男生的人数,写出的分布列,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数,将满足为整数的实数称为实数的小数部分,用记号表示.对于实数,无穷数列满足如下条件:其中

(1)若,求数列

(2)当时,对任意的,都有,求符合要求的实数构成的集合

(3)若是有理数,设是整数,是正整数,互质),问对于大于的任意正整数,是否都有成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前n项和为,记 ,…, 中奇数的个数为

(Ⅰ)若= n,请写出数列的前5项;

(Ⅱ)求证:"为奇数, (i = 2,3,4,...)为偶数”是“数列是单调递增数列”的充分不必要条件;

(Ⅲ)若,i=1, 2, 3,…,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,的中点是

(1)求异面直线所成角的大小;

(2)求面与平面所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是以d为公差的等差数列,{bn}数列是以q为公比的等比数列.

(1)若数列{bn}的前n项和为Sn,且a1b1d=2,S3a1003+5b2﹣2010,求整数q的值;

(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续ppNp≥2)项的和?请说明理由;

(3)若b1arb2asarb3at(其中tsr,且(sr)是(tr)的约数),求证:数列{bn}中每一项都是数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以椭圆)的右焦点为圆心,为半径作圆(其中为已知椭圆的半焦距),过椭圆上一点作此圆的切线,切点为.

1)若为椭圆的右顶点,求切线长

2)设圆轴的右交点为,过点作斜率为)的直线与椭圆相交于两点,若恒成立,且.求:

(ⅰ)的取值范围;

(ⅱ)直线被圆所截得弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某温室大棚规定,一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工作作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,)近似地满足函数关系,其中,b为大棚内一天中保温时段的通风量。

1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);

2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列111221243124841248165,其中第一项是,第二项是1,接着两项为,接着下一项是2,接着三项是,接着下一项是3,依此类推.记该数列的前项和为,则满足的最小的正整数的值为(

A.65B.67C.75D.77

查看答案和解析>>

同步练习册答案