精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.

(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线的距离.
(1)[2,4] (2)

试题分析:解:(1)以D为原点,DA,DC,DD1分别为x轴,y轴,z轴建立空间直角坐标系.
设DG=a,DH=b,则E(4,0,4),F(0,4,4),G(a,0,0),H(0,b,0).
=(-4,b,-4),=(a,-4,-4).
∵EH⊥FG.
·=-4a-4b+16=0,则a+b=4,即b=4-a.
又G1H在棱DA,DC上,则0≤a≤8,0≤b≤8,从而0≤a≤4.
∴GH==
∴GH取值范围是[2,4] .       ……6分
(2)当GH=2时,a=2,b=2.
=(-2,2,0),=(-4,4,0),即=2
∴EF∥GH,即EH与FG共面.
所以EF=2GH,EF∥GH,则
设P(x1,y1,z1),则=(x1-4,y,z1-4).
∴x1=,y1=,z1=,即P().
则P()在底面上ABCD上的射影为M(,0).又B(8,8,0),
所以为点P到直线的距离.     ……12分

点评:关键是通过建立空间直角坐标系,然后表示点的坐标以及点在平面的射影得到距离,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(理科)(本小题满分12分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设、是两条不同的直线,是一个平面,则下列命题正确的是(  )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,平面α⊥平面βAαBβAB与平面α所成的角为,过AB分别作两平面交线的垂线,垂足为A′、B′,若,则AB与平面β所成的角的正弦值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

求证:(1)PC⊥BC;
(2)求点A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱柱中,若AB=2,则点A到平面的距离为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直线,是两个不同的平面,下列命题成立的是(    )
A.若,则
B.若,则
C.若, 则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD ⊥平面DCEF,M,N分别为AB,DF的中点。

(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME与BN所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条不同直线及平面,则直线的一个充分条件是  (    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案