精英家教网 > 高中数学 > 题目详情
10.已知sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{3}$,则sin2α的值为(  )
A.$\frac{7}{9}$B.$\frac{5}{9}$C.$\frac{1}{3}$D.-$\frac{5}{9}$

分析 直接利用两角和一次的正弦函数化简,利用平方求解即可.

解答 解:sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{3}$,可得$\frac{\sqrt{2}}{2}$(cosx-sinx)=$\frac{\sqrt{2}}{3}$,
即cosx-sinx=$\frac{2}{3}$,
两边平方可得1-sin2x=$\frac{4}{9}$,
sin2α=$\frac{5}{9}$.
故选:B.

点评 本题考查两角和与差的三角函数,二倍角公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.化简(cos47°30′-sin47°30′)(sin23°cos8°-sin67°sin8°)=(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:
(1)AC⊥BD           (2)AB与平面BCD成60°的角
(3)△ACD是等边三角形 (4)AB与CD所成的角为60°
正确结论的编号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{a}$=(1,k),$\overrightarrow{b}$=(0,2),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\frac{{{{({x+1})}^0}}}{{\sqrt{1-x}}}$,则其定义域为{x|x<1且x≠-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知α,β为锐角,sinα=$\frac{\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{10}}{10}$,则α+2β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个几何体的三视图如图所示,其正视图、侧视图、俯视图均为直角三角形,且面积分别为$\frac{3}{2}$,3,1,则该几何体外接球的表面积为14π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=4cosωx•sin(ωx+$\frac{π}{6}$)+a(ω>0)图象与y轴的交点为(0,1),且图象上相邻两条对称轴之间的距离为$\frac{π}{2}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(α)=$\frac{4}{3}$,求sin(4α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四棱锥E-ABCD中,底面ABCD为梯形,AB∥CD,AB=2CD,M为AE的中点,设E-ABCD的体积为V,那么三棱锥M-EBC的体积为(  )
A.$\frac{1}{5}V$B.$\frac{2}{5}V$C.$\frac{1}{3}V$D.$\frac{2}{3}V$

查看答案和解析>>

同步练习册答案