精英家教网 > 高中数学 > 题目详情
7.在极坐标系(ρ,θ)(ρ>0,0<θ<$\frac{π}{2}$)中,曲线ρ=$\sqrt{3}$sinθ与ρ=cosθ的交点的直角坐标系坐标为($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).

分析 曲线ρ=$\sqrt{3}$sinθ与ρ=cosθ两式相除得tanθ=$\frac{\sqrt{3}}{3}$,由此求出θ,ρ,从而能求出曲线ρ=$\sqrt{3}$sinθ与ρ=cosθ的交点的直角坐标系坐标.

解答 解:∵曲线ρ=$\sqrt{3}$sinθ与ρ=cosθ,
∴两式相除得tanθ=$\frac{\sqrt{3}}{3}$,解得θ=$\frac{π}{6}$,
∴$ρ=cos\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
∴x=ρcosθ=$\frac{\sqrt{3}}{2}cos\frac{π}{6}$=$\frac{3}{4}$,
y=ρsinθ=$\frac{\sqrt{3}}{2}sin\frac{π}{6}$=$\frac{\sqrt{3}}{4}$,
∴曲线ρ=$\sqrt{3}$sinθ与ρ=cosθ的交点的直角坐标系坐标为($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).
故答案为:($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).

点评 本题考查两曲线交点的直角坐标系坐标的求法,是基础题,解题时要认真审题,注意极坐标与直线坐标的转化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.函数f(x)=Asin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示.
(1)求f(x)的解析式;
(2)当x∈[4,12]时,求f(x)的值域;
(3)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知-$\frac{1}{2}<a<$0,试将下列各数按大小顺序排列:A=1+a2,B=1-a2,C=$\frac{1}{1+a}$,D=$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线l的参数方程为$\left\{\begin{array}{l}{x=4+t}\\{y=3+t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程ρsin2θ=4cosθ,直线l与曲线C相交于A,B两点,则线段AB的长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在极坐标系中,设曲线C1:ρ=2sinθ与C2:ρ=2cosθ的交点分别为A,B,则线段AB的垂直平分线的极坐标方程为(  )
A.ρ=$\frac{1}{sinθ+cosθ}$B.ρ=$\frac{1}{sinθ-cosθ}$C.θ=$\frac{π}{4}$(ρ∈R)D.θ=$\frac{3π}{4}$(ρ∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角ABC中,角A、B、C所对的边分别为a,b,c,b=4,c=6,且asinB=2$\sqrt{3}$.
(1)求角A的大小;
(2)若D为BC的中点,求线段AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知正方体ABCD-A1B1C1D1中的棱长为8,点H在棱AA1上,且HA1=2,点E、F分别为棱B1C1、C1C的中点,P是侧面BCC1B1内一动点,且满足PE⊥PF,则当点P运动时,HP2的最小值是(  )
A.10B.27-6$\sqrt{2}$C.2$\sqrt{21}$D.108-24$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x+2|x-a|,
(1)当a=0时,求不等式f(x)≥1的解集;
(2)当a<0时,函数f(x)与x轴围成的三角形面积为6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个底面半径和高都为2的圆椎的表面积为(  )
A.4($\sqrt{2}$+1)πB.4(2$\sqrt{2}$+1)πC.4$\sqrt{2}$πD.8$\sqrt{2}$π

查看答案和解析>>

同步练习册答案