精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的前n项和为sn,且满足a1=1,an+1=3Sn
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:bn=log4an,求数列{bn}的前n项的和Tn

分析 (1)通过an+1=3Sn,利用an+1=Sn+1-Sn计算即得结论;
(2)通过(1)可知数列{bn}的通项公式,进而利用分组法求和计算即得结论.

解答 解:(1)∵an+1=3Sn
∴an+2-an+1=3(Sn+1-Sn)=3an+1
整理得:an+2=4an+1
又∵a1=1,
∴a2=3S1=3不满足上式,
∴数列{an}的通项公式an=$\left\{\begin{array}{l}{1,}&{n=1}\\{3×{4}^{n-2},}&{n≥2}\end{array}\right.$;
(2)由(1)可知bn=log4an=$\left\{\begin{array}{l}{0,}&{n=1}\\{n-2+lo{g}_{4}3,}&{n≥2}\end{array}\right.$,
∴当n≥2时,Tn=$\frac{(n-2)(n-2+1)}{2}$+(n-1)log43=$\frac{(n-2)(n-1)}{2}$+(n-1)log43,
又∵T1=0满足上式,
∴Tn=$\frac{(n-2)(n-1)}{2}$+(n-1)log43.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.某林场为了能及时发现火情,在林场中设立了两个观测点A和B,某日两个观侧点分别观测到C处出现火情,在A处观测到火情发生在北偏西40°方向,在B处观测到火情在北偏西60°方向,若B在A的正东方向10千米处,则火场C距离观测点A处29千米.(结果四舍五入取整)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\left\{\begin{array}{l}{x≥1}\\{x-y+1≤0}\\{2x-y-2≤0}\end{array}\right.$,则(x+2)2+(y-1)2的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a>0,b>0,且2a+b=2,则ab的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l经过点(2,4),且被平行直线l1:x-y+1=0与l2:x-y-2=0所截得的线段的中点在直线x+2y-3=0上.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数y=f(x)=$\frac{a•{2}^{x}-1-a}{{2}^{x}-1}$为奇函数.
(1)确定a的值;
(2)求函数的定义域;
(3)求函数的值域;
(4)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设2${\;}^{{x}^{2-1}}$=8,则x=(  )
A.2B.-2C.-2或2D.-3或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足:an(2+sin$\frac{n}{2}$π)=n(2+cosnπ),S4n=an2+bn,则a+2b=$\frac{133}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有$C_{n+1}^m$种取法.在这$C_{n+1}^m$种取法中,可以分成两类:一类是取出的m个球全部为白球,一类是取出m-1个白球和1个黑球,共有$C_1^0•C_n^m+C_1^1•C_n^{m-1}=C_1^0•C_{n+1}^m$,即有等式:$C_n^m+C_n^{m-1}=C_{n+1}^m$成立.若(1≤k<m≤n,k,m,n∈N),根据上述思想化简下列式子$C_k^0•C_n^m+C_k^1•C_n^{m-1}+C_k^2•C_n^{m-2}+…+C_k^k•C_n^{m-k}$=的结果为(  )
A.$C_{n+m}^m$B.$C_{n+k}^k$C.$C_{n+k}^m$D.$C_{n+m}^k$

查看答案和解析>>

同步练习册答案