分析 (1)通过an+1=3Sn,利用an+1=Sn+1-Sn计算即得结论;
(2)通过(1)可知数列{bn}的通项公式,进而利用分组法求和计算即得结论.
解答 解:(1)∵an+1=3Sn,
∴an+2-an+1=3(Sn+1-Sn)=3an+1,
整理得:an+2=4an+1,
又∵a1=1,
∴a2=3S1=3不满足上式,
∴数列{an}的通项公式an=$\left\{\begin{array}{l}{1,}&{n=1}\\{3×{4}^{n-2},}&{n≥2}\end{array}\right.$;
(2)由(1)可知bn=log4an=$\left\{\begin{array}{l}{0,}&{n=1}\\{n-2+lo{g}_{4}3,}&{n≥2}\end{array}\right.$,
∴当n≥2时,Tn=$\frac{(n-2)(n-2+1)}{2}$+(n-1)log43=$\frac{(n-2)(n-1)}{2}$+(n-1)log43,
又∵T1=0满足上式,
∴Tn=$\frac{(n-2)(n-1)}{2}$+(n-1)log43.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $C_{n+m}^m$ | B. | $C_{n+k}^k$ | C. | $C_{n+k}^m$ | D. | $C_{n+m}^k$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com