【题目】已知f(x)=|2x﹣1|﹣|2x+1|.
(1)求不等式f(x)>1的解集.
(2)当时,求证:4x2+4x+2>(2x+1)f(x).
【答案】(1);(2)见解析
【解析】
(1) ,再根据分段函数,即可求出不等式 的解集;
(2)要证明,只要证,根据绝对值三角不等式和基本不等式即可证明.
(1)f(x)=|2x﹣1|﹣|2x+1|,
当,f(x)=2>1恒成立,
当,f(x)=﹣4x>1,解得,
综上所述不等式f(x)>1的解集为(﹣∞,).
证明(2)∵,
∴2x+1>0,
要证4x2+4x+2>(2x+1)f(x),
只要证f(x)(2x+1),
∵(2x+1)22,当且仅当x=0时取等号,
f(x)=|2x﹣1|﹣|2x+1|≤|(2x﹣1)﹣(2x+1)|=2,
∴f(x)恒成立,
∴4x2+4x+2>(2x+1)f(x).
科目:高中数学 来源: 题型:
【题目】如题所示的平面图形中,为矩形,,为线段的中点,点是以为圆心,为直径的半圆上任一点(不与重合),以为折痕,将半圆所在平面折起,使平面平面,如图2,为线段的中点.
(1)证明:.
(2)若锐二面角的大小为,求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,△ABC是以AC为斜边的等腰直角三角形,△BCD是等边三角形.如图②,将△BCD沿BC折起,使平面BCD⊥平面ABC,记BC的中点为E,BD的中点为M,点F、N在棱AC上,且AF=3CF,C.
(1)试过直线MN作一平面,使它与平面DEF平行,并加以证明;
(2)记(1)中所作的平面为α,求平面α与平面BMN所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程以及直线的直角坐标方程;
(2)将曲线向左平移2个单位,再将曲线上的所有点的横坐标缩短为原来的,得到曲线,求曲线上的点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列结论:
(1)若对任意,且,都有,则为R上的减函数;
(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);
(3)若为R上的奇函数,则也是R上的奇函数;
(4)t为常数,若对任意的,都有则关于对称。
其中所有正确的结论序号为_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点,,并修建两段直线型道路,,规划要求:线段,上的所有点到点的距离均不小于圆的半径.已知点,到直线的距离分别为和(,为垂足),测得,,(单位:百米).
(1)若道路与桥垂直,求道路的长;
(2)在规划要求下,和中能否有一个点选在处?并说明理由;
(3)在规划要求下,若道路和的长度均为(单位:百米),求当最小时,、两点间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com