精英家教网 > 高中数学 > 题目详情
1.$\frac{1+2i}{(1-i)^{2}}$=$-1+\frac{i}{2}$.

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{1+2i}{(1-i)^{2}}$=$\frac{1+2i}{-2i}=\frac{(1+2i)i}{(-2i)•i}=\frac{-2+i}{2}=-1+\frac{i}{2}$.
故答案为:-1+$\frac{i}{2}$.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在△ABC中,$a=7,b=4\sqrt{3},c=\sqrt{13}$,则△ABC的最小角为(  )
A.60°B.30°C.15°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\sqrt{3}sin2x+2{cos^2}x+3$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在$[0,\frac{π}{2}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.定义在R上的函数f(x)=$\frac{x}{{{x^2}+1}}$,若函数g(x)=f(x)+$\frac{mx}{1+x}$在区间(-1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,$\overrightarrow m=(a-b,c),\overrightarrow n=(a-c,a+b)$,且$\overrightarrow m$与$\overrightarrow n$共线,求2sin(π+B)-4cos(-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)求不等式的解集:|x-1|+|x+3|≥2.
(2)不等式|x-1|+|x+3|>a,对一切实数x都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.y=x+$\frac{1}{x}$在点$({2,\frac{5}{2}})$处的切线的方程是3x-4y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知圆(x+3)2+y2=100,定点A(3,0),M为圆C上一动点,点P在AM上,点N在CM上,且满足$\overrightarrow{AM}$=2$\overrightarrow{AP}$,$\overrightarrow{NP}$•$\overrightarrow{AM}$=0,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)求过点Q(2,1)的弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑PABC中,PA⊥平面ABC,AB⊥BC,且AP=AC=1,过A点分别作AE⊥PB于E、AF⊥PC于F,连接EF当△AEF的面积最大时,tan∠BPC的值是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案