精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义在R上的奇函数

(1)求实数的值

(2)如果对任意,不等式恒成立,求实数的取值范围

【答案】(1)1(2)

【解析】

(1)利用函数为奇函数的定义即可得到m值;(2)先判断出函数f(x)R上单调递增,利用奇偶性和单调性将不等式转为恒成立,然后变量分离,转为求函数最值问题,最后解不等式即可得a的范围.

解:(1)方法1:因为是定义在R上的奇函数,

所以,即

,即

方法2:因为是定义在R上的奇函数,所以,即

,检验符合要求.

(2)

任取,则

因为,所以,所以

所以函数R上是增函数.

注:此处交代单调性即可,可不证明

因为,且是奇函数

所以

因为R上单调递增,所以

对任意都成立,

由于=,其中

所以,即最小值为3

所以

解得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学为提升学生的数学学习能力,进行了主题分别为“运算”、“推理”、“想象”、“建模”四场竞赛.规定:每场竞赛前三名得分分别为,且),选手的最终得分为各场得分之和.最终甲、乙、丙三人包揽了每场竞赛的前三名,在四场竞赛中,已知甲最终得分为分,乙最终得分为分,丙最终得分为分,且乙在“运算”这场竞赛中获得了第一名,那么“运算”这场竞赛的第三名是( )

A.B.C.D.甲和丙都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表经计算,则下列选项正确的是( )

使用智能手机

不使用智能手机

合计

学习成绩优秀

4

8

12

学习成绩不优秀

16

2

18

合计

20

10

30

附表

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

A. 有99.5%的把握认为使用智能手机对学习有影响

B. 有99.5%的把握认为使用智能手机对学习无影响

C. 有99.9%的把握认为使用智能手机对学习有影响

D. 有99.9%的把握认为使用智能手机对学习无影响

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,,,,,点上,且,将沿折起,使得平面平面 (如图), 中点.

(1)求证: 平面;

(2)在线段上是否存在点,使得平面?若存在,求的值,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中

(1)根据散点图判断,哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

(2)根据判断结果和表中数据,建立关于的回归方程;

(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省每年损失耕地20万亩,每亩耕地价值24000元,为了减小耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少t万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,t变动的范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调性;

(2)当时,若函数的极值为e,求的值;

(3)当时,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,已知曲线的参数方程为 为参数以原点为极点x轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为

Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;

Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.

查看答案和解析>>

同步练习册答案