精英家教网 > 高中数学 > 题目详情
直角坐标系内的一动点,运动时该点坐标满足不等式x<y,则这个动点的运动区域(用阴影表示)是(  )
分析:利用线性规划的内容作出不等式组对应的平面区域,然后根据平面区域内(1,0)的符号确定阴影部分的区域.
解答:解:取点(1,0),则1-0=1>0,所以点(1,0)在x>y的区域内,所以选A.
故选A.
点评:本题主要考查二元一次不等式组表示平面区域的知识,以及线性规划的基本应用,利用数形结合是解决此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的底面边长为6,侧棱长为
13
.有一动点M在侧面PAB内,它到顶点P的距离与到底面ABC的距离比为2
2
:1

精英家教网
(1)求动点M到顶点P 的距离与它到边AB的距离之比;
(2)在侧面PAB所在平面内建立为如图所示的直角坐标系,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•海淀区二模)如图,平面内的定点F到定直线l的距离为2,定点E满足:|
EF
|=2且EF⊥l于G,点Q是直线l上一动点,点M满足
FM
=
MQ
,点P满足
PQ
EF
PM
FQ
=0.
(1)建立适当的直角坐标系,求动点P的轨迹方程;
(2)若经过点E的直线l1与点P的轨迹交于相异两点A、B,令∠AFB=θ,当
3
4
π≤θ<π时,求直线l1的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M是直角坐标系xOy中第一象限内的一动点,定点F1(-5,0)、F2(5,0).

(1)若|+|=10,求点M的轨迹方程;

(2)若·=5,且点M又在双曲线xy=k(k>0)上,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面内的定点F到定直线l的距离为2,定点E满足:| |=2且EFlG,点Q是直线l上一动点,点M满足: =,点P满足: ,·=0.

(1)建立适当的直角坐标系,求动点P的轨迹方程;

(2)若经过点E的直线l1与点P的轨迹交于相异两点AB,令∠AFB=θ,当θπ时,求直线l1的斜率k的取值范围.

查看答案和解析>>

同步练习册答案