精英家教网 > 高中数学 > 题目详情

【题目】 已知函数.

(1)求函数在点处的切线方程;

(2)已知函数区间上的最小值为1,求实数的值.

【答案】(1); (2).

【解析】

(1)求得切线斜率k,点斜式得方程;(2)法一:,由h(x)单调增,则存在唯一的,变形,则构造函数,证明函数有唯一解,即可求解;法一:同法一则,利用基本不等式求解即可

(1) ,则函数在点处的切线方程为

(2)

在区间上单调递增,在区间上单调递减,存在唯一的

使得,即 (*),

函数上单调递增,单调递减;,单调递增,

由(*)式得

,显然是方程的解,

是单调减函数,方程有且仅有唯一的解

代入(*)式得,所求实数的值为.

解法2:

在区间上单调递增,在区间上单调递减,

所以函数上单调递增,故存在唯一的

使得,即 (*),

单调递减;,单调递增,

式得

= =

,

(当且仅当 =1),由,此时

代入(*)也成立,

∴实数的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数a为实数

求函数的单调区间;

若存在实数a,使得对任意恒成立,求实数m的取值范围.提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为.

)求椭圆的标准方程;

)设直线与椭圆交于两点,且点在第二象限.延长线交于点,若的面积是面积的3倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用如图所示的三角形解释二项式乘方展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….记作数列,若数列的前项和为,则 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面的中点

1)求所成角的大小

2)求与平面所成的角的大小

3)求绕直线旋转一周所构成的旋转体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中已知A(4,O)B(0,2)C(-1,0)D(0,-2),E在线段AB(不含端点),F在线段CD,EOF三点共线.

(1)F为线段CD的中点,证明:

(2)“F为线段CD的中点,的逆命题是否成立?说明理由;

(3),的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点

求椭圆的方程;

过点且不与轴重合的直线与椭圆交于不同的两点,过右焦点的直线分别交椭圆于点,设 ,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”翻译成现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步:第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,知道所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出更相减损术的程序图如图所示,如果输入的,则输出的为( ).

A. 3B. 6C. 7D. 8

查看答案和解析>>

同步练习册答案