精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=a•2x-2-x定义域为R的奇函数.
(1)求实数a的值;
(2)判断函数f(x)在R上的单调性,并利用函数单调性的定义证明;
(3)若不等式f(9x+1)+f(t-2•3x+5)>0在在R上恒成立,求实数t的取值范围.

分析 (1)利用奇函数的判定即可得出a的值;
(2)根据单调性的定义判断,得出f(x1)-f(x2)<0;
(3)结合(2)的结论和奇函数的性质,不等式可转化为t>-9x+2•3x-6,利用换元法和二次函数的知识求出右式的最小值即可.

解答 解:(1)∵f(x)是R上的奇函数,
∴f(-x)=-f(x) 对任意x∈R恒成立,即a•2-x-2x=-(a•2x-2-x).
即(a-1)(2-x+2x)=0,
∴a=1;                                   …(4分)
(2)f(x)为R上的增函数.下面证明:
任取x1,x2∈R,且x1<x2
f(x1)-f(x2)=${2}^{{x}_{1}}$-${2}^{-{x}_{1}}$-(${2}^{{x}_{2}}$-${2}^{-{x}_{2}}$)
=(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)+$\frac{{2}^{{x}_{1}}-{2}^{{x}_{2}}}{{2}^{{x}_{1}}{2}^{{x}_{2}}}$=(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)(1+$\frac{1}{{2}^{{x}_{1}}{2}^{{x}_{2}}}$)
∵x1<x2
∴${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,1+$\frac{1}{{2}^{{x}_{1}}{2}^{{x}_{2}}}$>0,
∴f(x1)-f(x2)<0,
∴f(x1)<f(x2),
∴f(x)为R上的增函数.…(8分)
(3)∵不等式f(9x+1)+f(t-2•3x+5)>0在R上恒成立
∴f(9x+1)>-f(t-2•3x+5)=f[-(t-2•3x+5)]=f(-t+2•3x-5),
∵f(x)为R上的增函数
∴9x+1>-t+2•3x-5,t>-9x+2•3x-6,即t>-(3x-1)2-5
当3x-1=0,即x=0时,-(3x-1)2-5有最大值-5,
所以t>-5…(12分)

点评 本题考查了函数奇偶性的判断,单调性的证明和恒成立问题的转化,奇偶性的应用,属于常规题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y-4≥0\\ x-y≤0\\ y≤3\end{array}\right.$,则z=3x+y的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a=log27,b=log20.7,c=20.7,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{3}{sinx+2}$的值域为(  )
A.(1,3)B.(1,3]C.[1,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若lg25+lg2lg50的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.四棱柱ABCD-A1B1C1D1中,∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD,则CC1与BD所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD
(Ⅰ)证明:平面PBD⊥平面PAC
(Ⅱ)设AP=1,AD=$\sqrt{3}$,∠CBA=60°,求A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以x轴为对称轴,以原点为顶点且过圆x2+y2-2x+6y+9=0的圆心的抛物线的方程是(  )
A.y=3x2或y=-3x2B.y=3x2C.y2=-9x或y=3x2D.y2=9x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a>$\frac{1}{2}$,b>0,若a+b=2,则$\frac{1}{2a-1}+\frac{2}{b}$的最小值为(  )
A.3+2$\sqrt{2}$B.6C.9D.3

查看答案和解析>>

同步练习册答案