【题目】如图,AB为圆O的直径,点E、F在圆O上,ABEF,矩形ABCD所在平面和圆O所在平面垂直,已知AB=2,EF=1.
(I)求证:平面DAF⊥平面CBF;
(II)若BC=1,求四棱锥F-ABCD的体积.
【答案】(I)见解析;(II).
【解析】
(I)通过证明,证得平面,由此证得平面平面.(II)矩形所在平面和圆所在平面垂直,点到边的距离即为四棱锥FABCD的高,然后利用锥体体积公式求得四棱锥的体积.
(I)
∵AB为圆O的直径,点F在圆O上
∴AF⊥BF
又矩形ABCD所在平面和圆O所在平面垂直且它们的交线为AB,CB⊥AB
∴CB⊥圆O所在平面
∴AF⊥BC
又BC、 BF为平面CBF上两相交直线
∴AF⊥平面CBF
又
∴平面DAF⊥平面CBF.
(II)连接OE
∵AB=2,EF=1,ABEF
∴OA=OE=1,即四边形OEFA为菱形
∴AF=OA=OF=1
∴等边三角形OAF中,点F到边OA的距离为
又矩形ABCD所在平面和圆O所在平面垂直
∴点F到边OA的距离即为四棱锥F-ABCD的高
∴四棱锥F-ABCD的高
又BC=1
∴矩形的ABCD的面积SABCD=
∴
科目:高中数学 来源: 题型:
【题目】已知, 分别为椭圆: 的左、右焦点,点在椭圆上.
(Ⅰ)求的最小值;
(Ⅱ)设直线的斜率为,直线与椭圆交于, 两点,若点在第一象限,且,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,、是海岸线、上的两个码头,为海中一小岛,在水上旅游线上.测得,,到海岸线、的距离分别为,.
(1)求水上旅游线的长;
(2)海中 ,且处的某试验产生的强水波圆,生成小时时的半径为.若与此同时,一艘游轮以小时的速度自码头开往码头,试研究强水波是否波及游轮的航行?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从某市使用A和B两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.
(1)已知抽取的100个使用A款订餐软件的商家中,甲商家的“平均送达时间”为18分钟。现从使用A款订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;
(2)试估计该市使用A款订餐软件的商家的“平均送达时间”的众数及平均数;
(3)如果以“平均送达时间”的平均数作为决策依据,从A和B两款订餐软件中选择一款订餐,你会选择哪款?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案①:规定每日底薪50元,快递业务每完成一单提成3元;方案②:规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为,,,,,,七组,整理得到如图所示的频率分布直方图.
(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;
(2)若骑手甲、乙选择了日工资方案①,丙、丁选择了日工资方案②.现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案①的概率;
(3)若从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首届世界低碳经济大会近日召开,本届大会的主题为“节能减排,绿色生态”.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为吨,最多为吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将3333的方格表中毎个格染三种颜色之一,使得每种颜色的格的个数相等.若相邻两格的颜色不同,则称其公共边为“分隔边".试求分隔边条数的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com