精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆的右焦点,且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1)求椭圆的方程;
(2)是否存在过点的直线与椭圆相交于不同的两点,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由
(1) ;(2)存在满足条件的直线,且其方程为.

试题分析:(1)由椭圆的对称性知,又原点到直线的距离为,得.又
故椭圆的方程为: 
(2)显然当轴垂直时不可能满足条件,
故设,代入椭圆方程得:
.
与椭圆于交于同的两点,设
.

,即

解得.
为不同的点,,故.
存在满足条件的直线,且其方程为.
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆、标准方程时,主要运用了椭圆的几何性质。(II)小题中,运用平面向量的数量积,“化证为算”,达到证明目的。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

直线与曲线相切于点,则的值为 (    )
A.5B. 6 C. 4D. 9

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2="2px" (p0)的焦点F的直线交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3.则此抛物线的方程为(    )

A.y2=—x
B.y2=9x
C.y2=x
D. y2=3x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与抛物线相交于两点,F为抛物线的焦点,若,则k的值为(   )。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为,其上的动点在准线上的射影为,若是等边三角形,则的横坐标是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的两焦点之间的距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线 y2 =" 4x" 的焦点作直线交抛物线于A(x1, y1)B(x2, y2)两点,如果=6,那么           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)己知是椭圆)上的三点,其中点的坐标为过椭圆的中心,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆 轴负半轴的交点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆+上,为焦点 且,则的面积为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案