精英家教网 > 高中数学 > 题目详情

【题目】给出下列六个命题:

1)若,则函数的图像关于直线对称.

2的图像关于直线对称.

3的反函数与是相同的函数.

4无最大值也无最小值.

5的最小正周期为.

6有对称轴两条,对称中心有三个.

则正确命题的个数是(

A.1B.2C.3D.4

【答案】A

【解析】

根据函数解析式及对称性可判断(1)(2)(3.根据解析式可判断(4)的最值情况.将(5)化简可求得最小正周期.根据正弦函数的图像与性质可判断(6.

对于(1,,则函数的图像关于直线对称,所以(1)错误;

对于(2,若函数,;.两个函数的图像没有关于对称,所以(2)错误;

对于(3,若函数,,其反函数为,是不同的函数,所以(3)错误;

对于(4,为偶函数,且当时为递减函数.因而当,函数有最大值,因而(4)错误;

对于(5, ,因而最小正周期为,所以(5)错误;

对于(6,由正弦函数的图像可知,,函数有对称轴两条,分别为;对称中心有三个,分别为,所以(6)正确.

综上可知,正确的为(6

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,已知,点QAC中点,底面ABCD,,点MPC的中点.

1)求直线PB与平面ADM所成角的正弦值;

2)求二面角D-AM-C的正弦值;

3)记棱PD的中点为N,若点Q在线段OP上,且平面ADM,求线段OQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)C的普通方程和的直角坐标方程;

(2)C上的点到距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足.

1)求数列的通项公式;

2)记是数列的前项和,若对任意的,不等式都成立,求实数的取值范围;

3)记,是否存在互不相等的正整数,使成等差数列,且成等比数列?如果存在,求出所有符合条件的;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一幢高楼上安放了一块高约10 米的 LED 广告屏,一测量爱好者在与高楼底部同一水平线上的 C 处测得广告屏顶端A 处的仰角为 31.80°,再向大楼前进 20 米到 D 处,测得广告屏顶端 A 处的仰角为 37.38°(人的高度忽略不计).

1)求大楼的高度(从地面到广告屏顶端)(精确到 1 米);

2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长 椅的高度忽略不计),长椅需安置在距大楼底部 E 处多远?已知视角 AMB M 为观测者的位置, B 为广告屏 底部)越大,观看得越清晰.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:

经济损失

4000元以下

经济损失

4000元以上

合计

捐款超过500元

30

捐款低于500元

6

合计

(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?

(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.

附:临界值表

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,昆明加大了特色农业建设,其中花卉产业是重要组成部分.昆明斗南毗邻滇池东岸,是著名的花都,有全国10支鲜花7支产自斗南之说,享有金斗南的美誉。对斗南花卉交易市场某个品种的玫瑰花日销售情况进行调研,得到这种玫瑰花的定价(单位:元/扎,20/扎)和销售率(销售率是销售量与供应量的比值)的统计数据如下:

10

20

30

40

50

60

0.9

0.65

0.45

0.3

0.2

0.175

1)设,根据所给参考数据判断,回归模型哪个更合适,并根据你的判断结果求回归方程(的结果保留一位小数);

2)某家花卉公司每天向斗南花卉交易市场提供该品种玫瑰花1200扎,根据(1)中的回归方程,估计定价(单位:元/扎)为多少时,这家公司该品种玫瑰花的日销售额(单位:元)最大,并求的最大值。

参考数据:的相关系数的相关系数.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点,点,动圆轴相切于点,过点的直线与圆相切于点,过点的直线与圆相切于点均不同于点),且交于点,设点的轨迹为曲线.

(1)证明:为定值,并求的方程;

(2)设直线的另一个交点为,直线交于两点,当三点共线时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆运送这批水果的费用最少为______.

查看答案和解析>>

同步练习册答案