【题目】函数y=ex﹣mx在区间(0,3]上有两个零点,则m的取值范围是 .
【答案】e<m≤
【解析】解:由y=ex﹣mx=0得m= ,
设f(x)= ,
则f'(x)= ,
由f'(x)>0,解得1<x≤3,此时函数单调递增,
由f'(x)<0,解得0<x<1,此时函数单调递减,
∴当x=1时,函数f(x)取得极小值,同时也是最小值f(1)=e,
∵当x→0时,f(x)→+∞,
当x=3时,f(3)= ,
∴要使函数y=ex﹣mx在区间(0,3]上有两个零点,
则e<m≤ ,
所以答案是:e<m≤ .
【考点精析】本题主要考查了函数的零点的相关知识点,需要掌握函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某学生对其30位亲属的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).
(1)根据茎叶图,帮助这位同学说明这30位亲属的饮食习惯.
(2)根据以上数据完成如下2×2列联表.
(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.a∈R,“ <1”是“a>1”的必要不充分条件
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命题p:“?x∈R,sinx+cosx≤ ”,则¬p是真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=kcn﹣k(其中c,k为常数),且a2=4,a6=8a3 .
(1)求an;
(2)求数列{nan}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分分)
如图,在中, , , 分别为, 的中点,点为线段上的一点,将沿折起到的位置,使,如图.
(Ⅰ)求证: 平面.
(Ⅱ)求证: .
(Ⅲ)线段上是否存在点,使平面?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,平面平面,四边形为矩形, ,点为的中点.
(1)证明: 平面.
(2)点为上任意一点,在线段上是否存在点,使得?若存在,确定点的位置,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2 ﹣sinBsinC= .
(1)求A;
(2)若a=4,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共13分)
以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经X表示。
(Ⅰ)如果X=8,求乙组同学植树棵数的平均数和方差;
(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率。
(注:方差其中为,,的平均数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com