精英家教网 > 高中数学 > 题目详情
2.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若a=2,b=1,B=29°,则此三角形解的情况是(  )
A.无解B.有一解C.有两解D.有无数解

分析 利用正弦定理可求得sinA,从而可判断此三角形解的情况.

解答 解:∵△ABC中,a=2,b=1,B=29°,
∴由正弦定理得:sinA=2sin29°<2sin30°=1,
又b<a,
∴29°<A<90°或90°<A<151°,
故此三角形有两解.
故选:C.

点评 本题考查三角形的形状判断,着重考查正弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若双曲线的顶点为椭圆2x2+y2=2长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是(  )
A.x2-y2=1B.y2-x2=1C.y2-x2=2D.x2-y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起如图乙所示的四棱锥P-OBCD,使得PC=$\sqrt{3}$,点E是线段PB上一动点.

(1)证明:DE和PC不可能垂直;
(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在圆内接四边形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ,则四边形ABCD周长的取值范围为(3+$\sqrt{7}$,3+2$\sqrt{7}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{1}{3}{x^3}-{x^2}$-3x+9的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校随机调查了110名不同性别的学生每天在校的消费情况,规定:50元以下为正常消费,大于或等于50元为非正常消费.统计后,得到如下的2×2列联表,已知在调查对象中随机抽取1人,为非正常消费的概率为$\frac{3}{11}$.
正常非正常合计
302050
501060
合计8030110
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,能否有99%的把握认为消费情况与性别有关系?
附临界值表参考公式:
P(K2≥k00.1000.050.0250.0100.001
k02.7063.8415.0246.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线y=2x2-x在点(1,1)处的切线方程为(  )
A.x-y+2=0B.3x-y+2=0C.x-3y-2=0D.3x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z=$\frac{(i-1)^{2}+2}{i+1}$的实部为(  )
A.-2B.-1C.1、D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆C方程x2+y2-2x-4y+a=0,圆C与直线x+2y-4=0相交于A,B两点,且OA⊥OB(O为坐标原点),则实数a的值为(  )
A.$-\frac{4}{5}$B.$\frac{1}{2}$C.$\frac{8}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案