已知等比数列{an}的前n项和为Sn.
(Ⅰ)若Sm,Sm+2,Sm+1成等差数列,证明am,am+2,am+1成等差数列;
(Ⅱ)写出(Ⅰ)的逆命题,判断它的真伪,并给出证明.
(Ⅰ)见解析 (Ⅱ) 见解析
(Ⅰ) ∵Sm+1=Sm+am+1,Sm+2=Sm+am+1+am+2.
由已知2Sm+2=Sm+Sm+1,∴ 2(Sm+am+1+am+2)=Sm+(Sm+am+1),
∴am+2=-am+1,即数列{an}的公比q=-.
∴am+1=-am,am+2=am,∴2am+2=am+am+1,∴am,am+2,am+1成等差数列.
(Ⅱ) (Ⅰ)的逆命题是:若am,am+2,am+1成等差数列,则Sm,Sm+2,Sm+1成等差数列.
设数列{an}的公比为q,∵am+1=amq,am+2=amq2.
由题设,2am+2=am+am+1,即2amq2=am+amq,即2q2-q-1=0,
∴q=1或q=-.
当q=1时,A≠0,∴Sm, Sm+2, Sm+1不成等差数列.
逆命题为假.
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com