精英家教网 > 高中数学 > 题目详情
1.当x∈(2,+∞)时,函数y=lg(ax-1)有意义.求实数a的取值范围.

分析 由题意可得2a-1≥0,由此求得a的范围.

解答 解:根据当x∈(2,+∞)时,函数y=lg(ax-1)有意义,可得2a-1≥0,
求得a≥$\frac{1}{2}$,即实数a的取值范围为[$\frac{1}{2}$,+∞).

点评 本题主要考查对数函数的定义域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.f(x-1)=x2-2x,则$f(\sqrt{2})$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=loga(2-ax2)在(0,1)上为减函数,则实数a的取值范围(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.用描述法表示下列集合:
(1)平面直角坐标系中第二象限内所有点的集合;
(2)被3除余2的全体自然数构成的集合;
(3)全体奇数的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆的中心在原点,焦点在x轴上,长轴长与短轴长的比为$\sqrt{2}$,且椭圆过点(-$\sqrt{2}$,$\sqrt{3}$),该椭圆的方程是$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.f(x)=$\left\{\begin{array}{l}{{x}^{3}+5,0≤x≤3}\\{x+1,3<x≤6}\end{array}\right.$,求f(1)+f(4)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2-4ax+2ay-5+5a2=0.
(1)求圆心的轨迹方程;
(2)直线l:x+2y+m=0与曲线C有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A,B,C是不共线的三点,O是△ABC内的一点.若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,求证:O是△ABC的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:正四面体ABCD(所有棱长均相等)的棱长为1,E、F、G、H分别是四面体ABCD中各棱的中点,设:$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AD}=\overrightarrow c$,试采用向量法解决下列问题
(1)求$\overrightarrow{EF}$的模长;       
(2)求$\overrightarrow{EF}$,$\overrightarrow{GH}$的夹角.

查看答案和解析>>

同步练习册答案