精英家教网 > 高中数学 > 题目详情

【题目】【2017届云南曲靖一中高三文上学期月考四】已知函数

(1)若的极值点的极大值

(2)求的范围使得恒成立

【答案】(1);(2).

【解析】

试题分析:(1)

,列表可得:的极大值为;(2)原命题等价于当恒成立,设,再利用导数工具求得当恒成立

试题解析:(1)),

的极值点

解得

变化时

极大值

极小值

的极大值为

(2)要使得恒成立恒成立

得单调减区间为,由得单调增区间为

得单调减区间为得单调增区间为

此时不合题意

上单调递增此时不合题意

得单调减区间为得单调增区间为

此时不合题意

综上所述,恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家用电器公司生产一新款热水器,首先每年需要固定投入 200万元,其次每生产1百台,需再投入0.9万元.假设该公司生产的该款热水器当年能全部售出,但每销售1百台需另付运输费0.1万元.根据以往的经验,年销售总额(万元)关于年产量(百台)的函数为.

(1)将年利润表示为年产量的函数;

(2)求该公司生产的该款热水器的最大年利润及相应的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:

强度(J)

1.6×1019

3.2×1019

4.5×1019

6.4×1019

震级(里氏)

5.0

5.2

5.3

5.4

注:地震强度是指地震时释放的能量.

地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCDA1B1C1D1中,EFM分别是棱B1C1BB1C1D1的中点,是否存在过点EM且与平面A1FC平行的平面?若存在,请作出并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y()与销售单价x()之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在十一黄金周期间降价搞促销,某超市对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不予优惠;(2)如果超过200元,但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其中500元按第(2)条给予优惠,超过500元的部分给予7折优惠。小张两次去购物,分别付款168元和423元,假设她一次性购买上述同样的商品,则应付款额为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014天津,文19】已知函数

(1) 的单调区间和极值;

(2)若对于任意的,都存在,使得,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,都是边长为2的等边三角形,设在底面的射影为.

(1)求证:中点;

(2)证明:

(3)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.

(1)求椭圆的离心率;

(2)设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点.若点在以为直径的圆内部,求的取值范围.

查看答案和解析>>

同步练习册答案