精英家教网 > 高中数学 > 题目详情
11.在等差数列{an}中,a4=0.8,a11=2.2,求a51+a52+…+a80

分析 利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:设等差数列{an}的公差为d,
∵a4=0.8,a11=2.2,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=0.8}\\{{a}_{1}+10d=2.2}\end{array}\right.$,解得a1=d=0.2.
∴an=0.2+0.2(n-1)=0.2n,
∴Sn=$0.2n+\frac{n(n-1)}{2}×0.2$=$\frac{{n}^{2}+n}{10}$.
∴a51+a52+…+a80=S80-S50=$\frac{80×(80+1)}{10}$-$\frac{50×(50+1)}{10}$=393.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x+2≥0,x∈R},集合$B=\left\{{x|\frac{x-1}{x+1}≥2}\right\}$.
(1)求集合A∩B,A∪B;
(2)求集合(∁uA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x2+bsinx,其中b为常数.那么“b=0”是“f(x)为偶函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某批发公司批发某商品,每个商品进价80元,批发价120元.该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价每个不能低于100元.
(1)当一次订购量为多少个时,每个商品的实际批发价为100元?
(2)当一次订购量为x(x∈N)个,每件商品的实际批发价为P元,写出函数P=f(x)的表达式;
(3)根据市场调查发现,经销商一次最大定购量为500个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.高安二中高中年级早上7点早读,假设该校学生小x与小y在早上6:30-6:50之间到校且每人在该时间段的任何时间到校是等可能的,则小x比小y至少早5分钟到校的概率为$\frac{9}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线x=2ay2的准线方程是x=1,则a的值是(  )
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求适合下列条件的直线的方程:
(1)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;
(2)经过点P(3,2),且在两坐标轴上的截距相等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在三棱锥A1-ABC中,A1A=AB=AD=2,A1A⊥平面ABD,∠DAB=90°,AE=$\frac{4}{3}$,动点F在△A1BD(包括边界)上运动,则AF+EF的最小值为(  )
A.$\frac{4\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={a|a=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z},B=[-π,π],则A∩B={-$\frac{2π}{3}$,-$\frac{π}{6}$,$\frac{π}{3}$,$\frac{5π}{6}$}.

查看答案和解析>>

同步练习册答案