精英家教网 > 高中数学 > 题目详情
设P:函数f(x)=2|x-a|在区间(4,+∞)上单调递增;q:loga2<1,如果“¬p”是真命题,“p或q”也是真命题,求实数a的取值范围.
分析:根据复合函数单调性确定函数f(x)=2|x-a|在区间(4,+∞)上单调递增的实数a的取值范围,求出其补集;再结合命题q为真时,求出a的范围,最后结合复合命题的真假分情况讨论后即可得到结论.
解答:解:∵函数f(x)=2|x-a|的外函数y=2u在其定义域R上为增函数
若函数f(x)=2|x-a|在区间(4,+∞)上单调递增
则内函数u=|x-a|在区间(4,+∞)也要为增函数
又∵u=|x-a|在区间[a,+∞)为增函数
∴(4,+∞)⊆[a,+∞)
即a≤4;
q:由loga2<1得0<a<1或a>2
如果“¬p”为真命题,则p为假命题,即a>4
又因为p或q为真,则q为真,即0<a<1或a>2
0<a<1或a>2
a>4
⇒a>4,
可得实数a的取值范围是a>4.
点评:本题主要考查复合命题的真假以及复合函数的单调性的判定和对数函数的性质的综合运用,关键是把两个命题等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设p:函数f(x)=x2-2cx+c2+1在区间(0,1)上的最小值为1,q:不等式x+|x-2c|>1的解集为R,如果命题P或q中一个为真命题另一个为假命题,试求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为函数f(x)=
1
2
sin(πx+
π
4
)
的图象上的一个最高点,Q为函数g(x)=
1
2
cosπx
图象上的一个最低点,则|PQ|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州二模)设P为函数f(x)=sin(πx)的图象上的一个最高点,Q为函数g(x)=cos(πx)的图象上的一个最低点,则|PQ|最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杨浦区一模)已知函数f(x)=
.
x
1
x
-21
.
(x>0)的值域为集合A,
(1)若全集U=R,求CUA;
(2)对任意x∈(0,
1
2
],不等式f(x)+a≥0恒成立,求实数a的范围;
(3)设P是函数f(x)的图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A、B,求
PA
PB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,设p:函数f(x)=x2+(a-1)x是区间(1,+∞)上的增函数,q:方程x2-ay2=1表示双曲线.
(1)若p为真命题,求实数a的取值范围;
(2)若“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案