精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x3,x≤0
log
1
3
x,x>0
,则方程f(x)=-1解的个数为(  )
A、0B、1C、2D、3
考点:分段函数的应用,函数的零点
专题:函数的性质及应用
分析:利用分段函数,考查方程,求出方程的解即可.
解答: 解:因为函数f(x)=
x3,x≤0
log
1
3
x,x>0
,方程f(x)=-1.
可得x≤0时,x3=-1,解得x=-1.
x>0时,log
1
3
x=-1
,解得x=3,
所以方程f(x)=-1解的个数为:2.
故选:C.
点评:本题考查函数的零点与方程的根的关系,分段函数的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a=3,c=3
3
,A=30°,求C及b.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知2|
AB
|=|
BC
|=4,|
AC
|=3,设O为△ABC的内心,且
AO
AB
BC
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若用1,2,3,4,5,6,7这七个数字中的六个数字组成没有重复数字,且任何相邻两个数字的奇偶性不同的六位数,则这样的六位数共有
 
个(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}对任意的正整数n和常数λ(λ∈N),等式an+λ2=an×an+2λ都成立,则称数列{an}为“λ阶梯等比数列”,
an+λ
an
的值称为“阶梯比”,若数列{an}是3阶梯等比数列且a1=1,a4=2.则a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)满足f(a+x)+f(a-x)=2b(其中a,b不同时为0),则称函数y=f(x)为“准奇函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:
①函数f(x)=sinx+1是准奇函数;
②函数f(x)=x3是准奇函数;
③若准奇函数y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)-f(a)为R上的奇函数;
④已知函数f(x)=x3-3x2+6x-2是准奇函数,则它的“中心点”为(1,2);
其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax-5+1(a>0,且a≠1)过定点(n,m),则二项式(y+m)n的展开式中y2的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验,借鉴其原理,我们也可以采用计算机随机数模拟实验的方法来估计π的值:先由计算机产生1200对0~1之间的均匀随机数x,y;再统计两个数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值,假如统计结果是m=940,那么可以估计π≈
 
(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=
f(x),x>0
f(-x),x<0
,给出下列命题:
①F(x)=|f(x)|;
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)-F(n)<0成立;
④当a>0时,函数y=F(x)-2有4个零点.
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案