精英家教网 > 高中数学 > 题目详情

【题目】已知直线与函数)的图象相交,将其中三个相邻交点从左到右依次记为ABC,且满足有下列结论:

n的值可能为2

,且时,的图象可能关于直线对称

时,有且仅有一个实数ω,使得上单调递增;

不等式恒成立

其中所有正确结论的编号为( )

A.③B.①②C.②④D.③④

【答案】D

【解析】

根据三角函数的图像性质,依次分析四个结论即可求解.

解析:如图所示,

不妨设,且线段的中点为

显然有,且的图象关于直线对称,

,即,(1

,且,∴由正弦曲线的图像可知,

.

),

,(2

由等式(1),(2)可得

,即

,且,∴,且

对于结论,显然,故结论错误:

对于结论,当,且时,则

,若的图象关于直线对称,

),即

显然与矛盾,从而可知结论错误:

对于结论,且在区间上单调递增,

,故结论正确;

对于结论,下证不等式),

(法一)当时,

),即),

(法二)即证不等式)恒成立,

构造函数),显然函数单调递增,

时,,即不等式)恒成立,故结论正确:

综上所述,正确的结论编号为③④

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,请说明函数的图象是由经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点为椭圆的右焦点,过的直线与椭圆交于两点,线段的中点为.

1)求椭圆的方程;

2)若直线斜率的乘积为,两直线分别与椭圆交于四点,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,以下关于的结论其中正确的结论是(

①当时,上无零点;

②当时,上单调递增;

③当时,上有无数个极值点;

④当时,上恒成立.

A.①④B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面多边形中,的中点,现将三角形沿折起,使.

(1)证明:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆规是用来画椭圆的一种器械,它的构造如图所示,在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定的滑块AB,它们可分别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一周,则点M的轨迹C是一个椭圆,其中|MA|2|MB|1,如图,以两条导槽的交点为原点O,横槽所在直线为x轴,建立直角坐标系.

1)将以射线Bx为始边,射线BM为终边的角xBM记为φ0≤φ),用表示点M的坐标,并求出C的普通方程;

2)已知过C的左焦点F,且倾斜角为α0≤α)的直线l1C交于DE两点,过点F且垂直于l1的直线l2C交于GH两点.|GH|依次成等差数列时,求直线l2的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的某种产品成箱包装,每箱20件,每一箱产品在交付用户时,用户要对该箱中部分产品作检验.设每件产品为不合格品的概率都为,且各件产品是否合格相互独立.

1)记某一箱20件产品中恰有2件不合格品的概率为取最大值时对应的产品为不合格品概率为,求

2)现从某一箱产品中抽取3件产品进行检验,以(1)中确定的作为p的值,已知每件产品的检验费用为10元,若检验出不合格品,则工厂要对每件不合格品支付30元的赔偿费用,检验费用与赔偿费用的和记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中心在原点,焦点在轴上的椭圆的一个焦点为是椭圆上一点.

1)求椭圆的标准方程;

2)设椭圆的上下顶点分别为是椭圆上异于的任意一点,轴,为垂足,为线段的中点,直线交直线于点为线段的中点.

①求证:

②若的面积为,求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C上异于AB的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

同步练习册答案