精英家教网 > 高中数学 > 题目详情
5.复数z=1+i,且$\frac{1-ai}{z}$(a∈R)是纯虚数,则实数a的值为(  )
A.-1B.0C.1D.2

分析 直接把复数z=1+i代入$\frac{1-ai}{z}$,然后利用复数代数形式的乘除运算化简,又知$\frac{1-ai}{z}$(a∈R)是纯虚数,列出方程组,求解即可得答案.

解答 解:∵复数z=1+i,
∴$\frac{1-ai}{z}$=$\frac{1-ai}{1+i}$=$\frac{(1-ai)(1-i)}{(1+i)(1-i)}=\frac{(1-a)-(1+a)i}{2}$
=$\frac{1-a}{2}-\frac{1+a}{2}i$,
又$\frac{1-ai}{z}$(a∈R)是纯虚数,
∴$\left\{\begin{array}{l}{\frac{1-a}{2}=0}\\{-\frac{1+a}{2}≠0}\end{array}\right.$,解得a=1.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若0<x<1,则2x,${({\frac{1}{2}})^x}$,log2x之间的大小关系为(  )
A.2x<log2x<${({\frac{1}{2}})^x}$B.2x<${({\frac{1}{2}})^x}$<log2xC.${({\frac{1}{2}})^x}$<log2x<2xD.log2x<${({\frac{1}{2}})^x}$<2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)化简求值:$\frac{{sin(π-α)cos(π+α)cos(\frac{3π}{2}+α)}}{cos(3π-α)sin(3π+α)}$;
(2)设sinα=-$\frac{{2\sqrt{5}}}{5}$,tanβ=$\frac{1}{3}$,-$\frac{π}{2}$<α<0,0<β<$\frac{π}{2}$,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设常数a>0,若9x+$\frac{a^2}{x}$≥a2+8对一切正实数x成立,则a的取值范围为(  )
A.[2,4]B.[2,3]C.[-2,4]D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N+
(1)求an
(2)求数列{Sn}的通项公式,并求出n为何值时,Sn取得最小值?并说明理由.(参考数据:lg 2≈0.3,lg 3≈0.48).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆柱的底面半径为1,高为1,则圆柱的表面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A=(-1,2],集合B={x|x2-2ax+a2-1≤0}.若B∩∁RA=B,则实数a的取值范围(-∞,-2]∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.2016法国欧洲杯比赛于6月中旬揭开战幕,随机询问100人是否喜欢足球,得到如下的2×2列联表:
喜欢足球不喜欢足球总计
351550
252550
总计6040100
参考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(其中n=a+b+c+d)
临界值表:
P(K2≥k00.050.025 0.010
k03.8415.0246.635
参照临界值表,下列结论正确的是(  )
A.有95%的把握认为“喜欢足球与性别相关”
B.有95%的把握认为“喜欢足球与性别无关”
C.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别无关”
D.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,若不等式3x-y+1-a≥0恒成立,则a的取值范围为(  )
A.a≥-8B.a≤-8C.a≤6D.a≥6

查看答案和解析>>

同步练习册答案