精英家教网 > 高中数学 > 题目详情
5.已知数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}={n^2}+1(n∈{N^*})$求数列{an}的通项公式.

分析 由原数列递推式可得${a}_{1}+3{a}_{2}+{3}^{2}{a}_{3}+…+{3}^{n-2}{a}_{n-1}=(n-1)^{2}+1$,(n≥2),两式作差后可得${a}_{n}=\frac{2n-1}{{3}^{n-1}}$(n≥2),再由原数列递推式求得首项,验证后得答案.

解答 解:由${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}={n^2}+1(n∈{N^*})$,得
${a}_{1}+3{a}_{2}+{3}^{2}{a}_{3}+…+{3}^{n-2}{a}_{n-1}=(n-1)^{2}+1$,(n≥2)
两式作差得:${3}^{n-1}{a}_{n}={n}^{2}-(n-1)^{2}=2n-1$(n≥2),
即${a}_{n}=\frac{2n-1}{{3}^{n-1}}$(n≥2),
又由${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}={n^2}+1(n∈{N^*})$求得a1=2不适合上式,
∴${a_n}=\left\{{\begin{array}{l}{2(n=1)}\\{\frac{2n-1}{{{3^{n-1}}}}(n≥2)}\end{array}}\right.$.

点评 本题考查数列递推式,考查了作差法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.己知函数f(x)=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$cosx,x∈R.
(1)证明:f(x)的最小正周期为2π;
(2)若关于x的方程f(x)-a=0在区间[$\frac{π}{6}$,π]上有两个不同的实数解,求实数a的值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={1,2,3,4,5},B={3,4,5,6,7,8}.
(1)求A∪(B∩C);   
(2)求(∁UB)∪(∁UC)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为$\frac{π}{4}$和$\frac{π}{6}$,线段AB在α∩β=l上的射影为 A′B′,若AB=12,则A′B′=(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,$\overrightarrow a$=(2,0),|$\overrightarrow b$|=1,则|$\overrightarrow a$+2$\overrightarrow b$|=(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.12D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α∩β=l,a?α,b?β,且a,b是异面直线,那么直线l(  )
A.至多与a,b中的一条相交B.至少与a,b中的一条平行
C.与a,b都相交D.至少与a,b中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=x2-x+1,命题p:?x∈R,f(x)>0,则(  )
A.p是真命题,¬p:?x0∈R,f(x0)<0B.p是真命题,¬p:?x0∈R,f(x0)≤0
C.p是假命题,¬p:?x0∈R,f(x0)<0D.p是假命题,¬p:?x0∈R,f(x0)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆方程为$\frac{x^2}{25}+\frac{y^2}{9}$=1,a1,a2,…,a9是该椭圆的过焦点的其中9条弦的长度,若数列a1,a2,…,a9是等差数列,则数列a1,a2,…,a9的公差的最大值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E,F分别是PC,PD的中点,AD=AB=1.
(1)若点G为线段BC的中点,证明:平面EFG∥平面PAB;
(2)在(1)的条件下,求以△EFG为底面的三棱锥C-EFG的高.

查看答案和解析>>

同步练习册答案