精英家教网 > 高中数学 > 题目详情

【题目】设函数 ,则关于函数f(x)有以下四个命题( )
x∈R,f(f(x))=1;
x0 , y0∈R,f(x0+y0)=f(x0)+f(y0);
③函数f(x)是偶函数;
④函数f(x)是周期函数.
其中真命题的个数是( )
A.4
B.3
C.2
D.1

【答案】A
【解析】解:由
可得f(x)=0或1,则x∈R,f(f(x))=1,故①正确;
时,f(x0+y0)=f(x0)+f(y0),故②正确;
∵x为有理数,则﹣x为有理数,x为无理数,则﹣x为无理数,∴函数f(x)是偶函数,故③正确;
任何一个非0的有理数都是函数的周期,∴函数f(x)是周期函数,故④正确.
∴真命题的个数是4个.
故选:A.
【考点精析】通过灵活运用命题的真假判断与应用,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,侧棱BB1⊥底面A1B1C1 , D为AC 的中点,A1B1=BB1=2,A1C1=BC1 , ∠A1C1B=60°.
(Ⅰ)求证:AB1∥平面BDC1
(Ⅱ)求多面体A1B1C1DBA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,中,.

(1)在边上任取一点,求满足的概率;

(2)的内部任作一条射线,与线段交于点,求满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,A1B与AB1交于点D,A1C与AC1交于点E.求证:
(1)DE∥平面B1BCC1
(2)平面A1BC⊥平面A1ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn(n∈N*),且满足: ①|a1|≠|a2|;
②r(n﹣p)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 其中r,p∈R,且r≠0.
(1)求p的值;
(2)数列{an}能否是等比数列?请说明理由;
(3)求证:当r=2时,数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.
(1)当 为何值时,平面CDG⊥平面A1DE?
(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)和动直线l:y=kx+b(k,b是参变量,且k≠0.b≠0)相交于A(x1 , y2),N)x2 , y2)两点,直角坐标系原点为O,记直线OA,OB的斜率分别为kOAkOB= 恒成立,则当k变化时直线l恒经过的定点为(
A.(﹣ p,0)
B.(﹣2 p,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了组数据作为研究对象,如下图所示((吨)为该商品进货量, (天)为销售天数):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

Ⅰ)根据上表数据在下列网格中绘制散点图;

Ⅱ)根据上表提供的数据,求出关于的线性回归方程

(Ⅲ)在该商品进货量(吨)不超过6(吨)的前提下任取两个值,求该商品进货量x(吨)恰有一个值不超过3(吨)的概率.

参考公式和数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心在直线上,且经过点A-30),B12).

(1)求圆M的方程;

2)直线与圆M相切,且y轴上的截距是x轴上截距的两倍,求直线的方程.

查看答案和解析>>

同步练习册答案