精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinx•cosx+2mcos2x.
(1)当m=
3
时,求函数f(x)的周期,在区间[0,
π
2
]上的值域;
(2)若m<0,求函数f(x)在区间[0,
π
2
]上的最小值.
考点:两角和与差的正弦函数,三角函数的周期性及其求法,三角函数的最值
专题:导数的综合应用,三角函数的图像与性质
分析:解:(1)当m=
3
时,利用三角函数恒等式,化简f(x),求出周期T以及f(x)的值域;
(2)化简f(x),求出函数的导数f′(x),利用f′(x)=0,求出x的值,从而求出f(x)的最小值.
解答: 解:(1)∵m=
3

∴f(x)=2sinxcosx+2
3
cos2x
=sin2x+
3
+
3
cos2x
=2sin(2x+
π
3
)+
3

∴周期T=
2
=π;
又∵x∈[0,
π
2
],
∴2x+
π
3
∈[
π
3
3
],
∴sin(2x+
π
3
)∈[-
3
2
,1],
∴f(x)∈[0,2+
3
];
(2)∵f(x)=2sinxcosx+2mcos2x
=sin2x+mcos2x+m,
∴f′(x)=2cos2x-2msin2x=2(cos2x-msin2x),
令f′(x)=0,得cos2x-msin2x=0,
解得m=
cos2x
sin2x

∴tan2x=
1
m

又∵x∈[0,
π
2
],
∴2x=π+arctan
1
m

∴x=
π
2
+
1
2
arctan
1
m

∴f(x)的最小值是
f(x)min=sin2(
π
2
+
1
2
arctan
1
m
)+mcos2(
π
2
+
1
2
arctan
1
m
)+m
=-sin(arctan
1
m
)-mcos(arctan
1
m
)+m
设sin(arctan
1
m
)=t,
则t=-
1
1
tan2(arctan
1
m
)
+1
=-
1
m2+1

∴cos(arctan
1
m
)=
1-t2
=
-m
m2+1

∴f(x)的最小值为
f(x)min=
1
m2+1
-m•
-m
m2+1
+m=
1+m2
m2+1
+m=
1+m2
+m.
点评:本题考查了三角函数恒等式的化简问题,也考查了利用导数求函数最值的问题,是综合性题目,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x=a2-b2,a∈Z,b∈Z},求证:对k∈Z,4k-2∉A,2k-1∈A.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2sin(3x-
4
),有下列结论:
①函数f(x)的图象关于点(
12
,0)对称;
②函数f(x)的图象关于直线x=
5
12
π对称;
③在x∈[
π
12
5
12
π]为单调增函数.
则上述结论题正确的是
 
.(填相应结论对应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

某种笔记本每本5元,买x(x∈{1.2.3.4})本笔记本的钱数记为y元,试求出y关于x的函数解析式,并画出这个函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

选择适当的方法表示下列集合:
(1)由x2-1的因式组成的集合;
(2)“welcome to Beijing”中的所有字母组成的集合;
(3)平面直角坐标系内第三象限的点组成的集合;
(4)以A为圆心,r为半径的圆上的所有点组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x,y},B={1,xy},若A=B,求x,y分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,且它的前n项和Sn=(
an+1
2
2-
1
4

(1)求数列{an}的通项公式;
(2)设bn=
an+1
sn2
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,cosB=
3
6
3
sinA-2sinC=0.
(1)求tanA的值;
(2)若b=5,求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位同学在相同的5次数学测试中,测试成绩如图所示,设
S,S分别为甲、乙两位同学数学测试成绩的标准差,则S,S
的大小关系是
 

查看答案和解析>>

同步练习册答案