精英家教网 > 高中数学 > 题目详情

【题目】某高中随机抽取部分高一学生调查其上学路上所需时间频(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为.

(1)求直方图中的值;

(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生 1200名请估计新生中有多少名学生可以申请住宿;

(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率).

【答案】(1);(2) ;(3)分布列见解析, .

【解析】试题分析:(1)根据频率直方图的矩形面积之和为1求出x的值;
(2)根据上学时间不少于1小时的频率估计住校人数;
(3)根据二项分布的概率计算公式得出分布列,再计算数学期望.

试题解析;(1)由直方图可得.

.

(2)新生上学所需时间不少于1小时的频率为:

.

(名),

名新生中有180名学生可以申请住宿.

(3) 的可能取值为0,1,2,3,4.

由直方图可知,每位学生上学所需时间少于40分钟的概率为,

.

的分布列为:

0

1

2

3

4

.

的数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究所计划利用“神舟十一号”飞船进行新产品搭载实验,计划搭载新产品,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生收益来决定具体安排,通过调查,搭载每件产品有关数据如表:

因素

产品

产品

备注

研制成本、搭载费用之和/万元

20

30

计划最大投资

金额300万元产品质量/千克

10

5

最大搭载

质量110千克预计收益/万元

80

60

——

则使总预计收益达到最大时, 两种产品的搭载件数分别为(  )

A. 9,4 B. 8,5 C. 9,5 D. 8,4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图一是美丽的勾股树,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1勾股树,重复图二的作法,得到图三为第2勾股树,以此类推,已知最大的正方形面积为1,则第勾股树所有正方形的个数与面积的和分别为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一部分图象如图所示,其中.

1)求函数解析式;

2)求时,函数的值域;

3)将函数的图象向右平移个单位长度,得到函数的图象,求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,直线的参数方程为为参数, 为直线的倾斜角,且),以原点为极点, 轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)若直线经过圆的圆心,求直线的倾斜角;

(2)若直线与圆交于 两点,且,点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名技术人员,将他们随机分成两组,每组20人,第一组技术人员用第一种生产方式,第二组技术人员用第二种生产方式.根据他们完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)求40名技术人员完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的人数填入下面的列联表:

超过

不超过

合计

第一种生产方式

第二种生产方式

合计

(2)根据(1)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

1.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆C过定点F20),且与直线x=-2相切,圆心C的轨迹为E

1)求圆心C的轨迹E的方程;

2)若直线lEPQ两点,且线段PQ的中心点坐标(11),求|PQ|

查看答案和解析>>

同步练习册答案