精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2-xx+1

(1)判断函数f(x)在(-∞,-1)上的单调性,并给出证明;
(2)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.
分析:(1)先把f(x)化简,然后用定义给出证明;
(2)由f(x)的单调性求出f(x)在x∈(-∞,-1)∪(-1,0)上的值域,求出3x在x∈(-∞,-1)∪(-1,0)上的值域,若两值域交集非空,则存在x0,否则不存在.
解答:解:(1)f(x)=
3
x+1
-1
,∴f(x)在(-∞,-1)上为减函数,
下面用定义给出证明:
设x1<x2<-1,则f(x1)-f(x2)=
3(x2-x1)
(x1+1)(x2+1)

∵x2-x1>0,x1+1<0,x2+1<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)在(-∞,-1)上为减函数.
(2)∵x0<0时,0<3x0<1
由(1)知,f(x)在(-∞,-1),(-1,+∞)上为减函数,
当x<-1时,f(x)<-1,当-1x<0时,x>2,故当x0<0时,f(x)>2或f(x)<-1,
故不存在负数x0,使得f(x0)=3x0成立.
点评:本题考查函数的单调性及其应用,注意体会定义在判断单调性中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案