精英家教网 > 高中数学 > 题目详情

【题目】下表是某地某年月平均气温(华氏度):

月份

1

2

3

4

5

6

7

8

9

10

11

12

平均气温

21.4

26.0

36.0

48.8

59.1

68.6

73.0

71.9

64.7

53.5

39.8

27.7

以月份为x轴(月份),以平均气温为y.

1)用正弦曲线去拟合这些数据;

2)估计这个正弦曲线的周期T和振幅A

3)下面三个函数模型中,哪一个最适合这些数据?

;②;③.

【答案】(1)作图见解析(2),(3)③最适合这些数据

【解析】

(1)由表中所给数据作出图像,注意月份(2)由图像最高点与最低点的横坐标求出周期,由最大值与最小值求出A(3) 不妨取,分别代入三个式子中验证,只有③式满足.

解析(1)如图.

2)最低气温为1月份21.4,最高气温为7月份73.0,故,所以.

因为2A的值等于最高气温与最低气温的差,即,所以.

3)因为月份,所以不妨取.

代入①,得,故①不适合,

代入②,得,故②不适合,

代入③,得,所以③适合.所以③最适合这些数据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);

2)根据表格中的数据作出一个周期的图象;

3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数fx)=|xm+x|,mN*,存在实数x使fx)<2成立.

1)求实数m的值;

2)若α≥1β≥1fα+fβ)=4,求证:≥3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设奇函数上是增函数,且,则不等式的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在地面上同一地点观测远方匀速垂直上升的热气球,在上午10点整热气球的仰角是到上午10点20分的仰角变成.请利用下表判断到上午11点整时,热气球的仰角最接近哪个度数( )

0.5

0.559

0.629

0.643

0.656

0.669

0.682

0.695

0.707

0.866

0.829

0.777

0.766

0.755

0.743

0.731

0.719

0.707

0.577

0.675

0.810

0.839

0.869

0.900

0.933

0.966

1.0

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全世界越来越关注环境保护问题,某监测站点于2018年1月某日起连续天监测空气质量指数(),数据统计如下:

空气质量指数()

空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

20

40

10

5

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;

(2)由频率分布直方图,求该组数据的众数和中位数;

(3)在空气质量指数分别属于的监测数据中,用分层抽样的方法抽取天,再从中任意选取天,求事件“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)

由散点图选择两个模型进行拟合,经过数据处理得到两个回归方程分别为,并得到以下一些统计量的值:

残差平方和

0.000591

0.000164

总偏差平方和

0.006050

(1)请利用相关指数判断哪个模型的拟合效果更好;

(2)某位购房者拟于2018年6月份购买这个小区平方米的二手房(欲

购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米)

附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款),征收方式见下表:

契税

(买方缴纳)

首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且144平方米以内(含144平方米)为1.5%;面积144平方米以上或非首套为3%

增值税

(卖方缴纳)

房产证未满2年或满2年且面积在144平方米以上(不含144平方米)为5.6%;其他情况免征

个人所得税

(卖方缴纳)

首套面积144平方米以内(含144平方米)为1%;面积144平方米以上或非首套均为1.5%;房产证满5年且是家庭唯一住房的免征

参考数据:. 参考公式:相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求函数的单调区间;

)若函数上是减函数,求实数a的最小值;

)若,使)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案