精英家教网 > 高中数学 > 题目详情
6.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是(  )
A.①③都可能为分层抽样B.②④都不能为分层抽样
C.②③都不能为系统抽样D.①④都可能为系统抽样

分析 观察所给的四组数据,根据四组数据的特点,把所用的抽样选出来,①,③可能是系统抽样或分层抽样,②是简单随机抽样,④一定不是系统抽样和分层抽样.

解答 解:观察所给的四组数据,
①,③可能是系统抽样或分层抽样,
②是简单随机抽样,
④一定不是系统抽样和分层抽样,
故选:A.

点评 简单随机抽样是一种最简单、最基本的抽样方法.常用的简单随机抽样方法有抽签法和随机数法.简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数f(x)=2x+1的反函数f-1(x)=log2x-1(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)对任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.
(1)数列{an}满足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),求an
(2)令bn=$\frac{4}{4{a}_{n}-1}$,Tn=b${\;}_{1}^{2}$+b${\;}_{2}^{2}$+b${\;}_{3}^{2}$+…+b${\;}_{n}^{2}$,Sn=32-$\frac{16}{n}$,试比较Tn和Sn的大小;
(3)在(1)的条件下,设bn=4an-1,cn=bnqn-1(q≠0,n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=log26,b=log412,c=log618,则(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合$A=\left\{{x\left|{2sinx-1>0,0<x<2π}\right.}\right\},B=\left\{{x\left|{{2^{{x^2}-x}}}\right.>4}\right\}$
(1)求集合A和B;
(2)求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某单位抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,则该代表中奖的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)在x=1处可导,则$\lim_{△x→0}\frac{f(1+△x)-f(1)}{-2△x}$等于(  )
A.f'(1)B.$-\frac{1}{2}f'(1)$C.-2f'(1)D.-f'(1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.复数z=(1+i)(a-i)表示的点在第四象限,则实数a的取值范围是-1<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={1,2},B={x|ax-2=0},若B⊆A,则实数a的所有可能值构成的集合为(  )
A.{1,$\frac{1}{2}$}B.{1,2}C.{0,1,2}D.以上都不对

查看答案和解析>>

同步练习册答案