精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线是过点,倾斜角为的直线,以直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求曲线的普通方程和曲线的一个参数方程;

(2)曲线与曲线相交于两点,求的值.

【答案】(1)曲线的普通方程为,由题得,曲线的一个参数方程为为参数);(2.

【解析】试题分析:(1)由极坐标和直角坐标互化公式转化极坐标方程为普通方程即可.直接利用直线的倾斜角,以及经过的点 求出直线的参数方程:

2)直线的参数方程代入椭圆方程,利用韦达定理,根据参数的几何意义求解即可.

试题解析:(1

即曲线的普通方程为

由题得,曲线的一个参数方程为

为参数);

2)设

,代入中,

,整理得,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为自然对数的底数.

(Ⅰ)若在区间内具有相同的单调性,求实数的取值范围;

(Ⅱ)若,且函数的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数解析式:

(1)已知是一次函数,且满足3,求

(2)已知,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,又的导函数.若正常数满足条件.证明: <0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中均为实数, 为自然对数的底数.

(I)求函数的极值;

(II)设,若对任意的

恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知的边所在直线的方程为满足,点边所在直线上且满足.

(1)求边所在直线的方程;

(2)求外接圆的方程;

(3)若动圆过点,且与的外接圆外切,求动圆的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:

未过度使用

过度使用

合计

未患颈椎病

15

5

20

患颈椎病

10

20

30

合计

25

25

50

(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?

(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为,求的分布列及数学期望.

参考数据与公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量垂直,且.

(1)求数列的通项公式;

2)若数列满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克、米2).如下表所示:

(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;

(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在中的概率.

查看答案和解析>>

同步练习册答案