精英家教网 > 高中数学 > 题目详情
12.已知函数ft(x)=-(x-t)2+t(t∈R),设a>b,f(x)=$\left\{\begin{array}{l}{{f}_{a}(x),{f}_{a}(x)≥{f}_{b}(x)}\\{{f}_{b}(x),{f}_{a}(x)<{f}_{b}(x)}\end{array}\right.$,若函数y=f(x)-x+a-b有四个零点,则b-a的取值范围是(  )
A.(-∞,-2-$\sqrt{5}$)B.(-∞,2-$\sqrt{5}$)C.(-2-$\sqrt{5}$,0)D.(2-$\sqrt{5}$.0)

分析 解方程fa(x)=fb(x)得交点坐标,函数f(x)的图象与直线l:y=x+b-a有四个不同的交点,由图象知,点P在l下方,由此解得b-a的取值范围.

解答 解:作函数f(x)的图象,且解方程fa(x)=fb(x)得,
-(x-a)2+a=-(x-b)2+b,解得x=$\frac{a+b-1}{2}$,
此时y=-($\frac{a+b-1}{2}$-b)2+b=-($\frac{a-b-1}{2}$)2+b,
即交点坐标为($\frac{a+b-1}{2}$,-($\frac{a-b-1}{2}$)2+b),
若y=f(x)-x+a-b有四个零点,
即f(x)-x+a-b=0有四个根,
即f(x)=x+b-a,
分别作出f(x)与y=x+b-a的图象如图:

要使函数y=f(x)-x+a-b有四个零点,
即函数f(x)的图象与直线l:y=x+b-a有四个不同的交点.
由图象知,点P在下方,
所以-($\frac{a-b-1}{2}$)2+b<$\frac{a+b-1}{2}$+b-a,
即($\frac{a-b-1}{2}$)2>$\frac{a-b+1}{2}$,
设t=a-b,则t>0,
则方程等价为$\frac{(t-1)^{2}}{4}$>$\frac{t+1}{2}$,即t2-4t-1>0,
即t<2$-\sqrt{5}$,或t>2+$\sqrt{5}$,
∵t>0,
∴t>2+$\sqrt{5}$,
故b-a=-t<-2-$\sqrt{5}$,
即b-a的取值范围是(-∞,-2-$\sqrt{5}$),
故选:A

点评 本题主要考查根的存在性以及根的个数判断,函数的零点与方程的根的关系,体现了转化的数学思想,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如果a<b,那么下列选项正确的是(  )
A.a+5>b+5B.3a>3bC.-5a>-5bD.$\frac{a}{3}$>$\frac{b}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{bn}的前n项和为Sn,且2Sn=3bn-1,则bn=3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A、B两点A(x1,y1),B(x2,y2),M为线段AB的中点,l为准线,MM1⊥l,AA1⊥l,BB1⊥l,M1、A1、B1为垂足,求证:
(1)y1y2=-p2
(2)以AB为直径的圆与l相切;
(3)A1、O、B三点共线;
(4)FM1⊥AB;
(5)设MM1交抛物线于Q,则Q平分MM1
(6)$\frac{1}{AF}$+$\frac{1}{BF}$=$\frac{2}{P}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=$\frac{1}{2}$x2-(2+a)x+2alnx的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,当x∈[0,10]时,关于x的方程f(x)=x-$\frac{1}{5}$的所有解的和为(  )
A.55B.100C.110D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中各项系数的和为2,求该展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则B’点的坐标为(  )
A.(2,$2\sqrt{3}$)B.($\frac{3}{2}$,$2-\sqrt{3}$)C.(2,$4-2\sqrt{3}$)D.($\frac{3}{2}$,$4-2\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex(ax+b),曲线y=f(x)在(0,f(0))处的切线方程为y=4x+1.
(1)求a,b的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

同步练习册答案