【题目】函数f(x)=x3+ax2+bx+a2在x=1时有极值10,则a的值为 .
【答案】4
【解析】解:求导函数,可得f′(x)=3x2+2ax+b
∵函数f(x)=x3+ax2+bx+a2在x=1时有极值10
∴f′(1)=2a+b+3=0,f(1)=a2+a+b+1=10
解得a=﹣3,b=3或a=4,b=﹣11,
当a=﹣3时,f′(x)=3x2﹣6x+3=3(x﹣1)2≥0,∴x=1不是极值点
当a=4,b=﹣11时,f′(x)=3x2+8x﹣11=(x﹣1)(3x+11),在x=1的左右附近,导数符号改变,满足题意
∴a=4
所以答案是:4.
【考点精析】掌握函数的极值与导数是解答本题的根本,需要知道求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
科目:高中数学 来源: 题型:
【题目】某海关对同时从三个不同地区进口的某种商品进行随机抽样检测,已知从三个地区抽取的商品件数分别是50,150,100.检测人员再用分层抽样的方法从海关抽样的这些商品中随机抽取6件样品进行检测.
(1)求这6件样品中,来自各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往另一机构进行进一步检测,求这2件样品来自相同地区的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆: 的离心率,且椭圆上一点到点的距离的最大值为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设, 为抛物线: 上一动点,过点作抛物线的切线交椭圆于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:
时间 | 第4天 | 第32天 | 第60天 | 第90天 |
价格(千元) | 23 | 30 | 22 | 7 |
(1)写出价格关于时间的函数关系式;(表示投放市场的第天);
(2)销售量与时间的函数关系:,则该产品投放市场第几天销售额最高?最高为多少千元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一堆产品正品与次品都多于2件中任取2件,观察正品件数和次品件数,则下列说法:
“恰好有1件次品”和“恰好2件都是次品”是互斥事件
“至少有1件正品”和“全是次品”是对立事件
“至少有1件正品”和“至少有1件次品”是互斥事件但不是对立事件
“至少有1件次品”和“全是正品”是互斥事件也是对立事件
其中正确的有______填序号.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>﹣2f(x),若g(x)=x2f(x),则不等式g(x)<g(1﹣x)的解集是( )
A.( ,+∞)
B.(﹣∞, )
C.(﹣∞,0)∪(0, )
D.(0, )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com