【题目】已知椭圆的两个焦点,与短轴的一个端点构成一个等边三角形,且直线与圆相切.
(1)求椭圆的方程;
(2)已知过椭圆的左顶点的两条直线,分别交椭圆于,两点,且,求证:直线过定点,并求出定点坐标;
(3)在(2)的条件下求面积的最大值.
【答案】(1);(2)证明见;解析;定点;(3).
【解析】
(1)根据直线与圆相切得圆心到直线距离等于半径列一个方程,再根据等边三角形性质得,解方程组得 ,即得结果;
(2)先设直线方程,与椭圆方程联立分别解得M,N坐标,再求斜率(注意讨论),利用点斜式得直线方程,即得定点坐标;
(3)利用韦达定理以及弦长公式得,再根据三角形面积公式得面积的函数关系式,最后根据基本不等式求最大值.
(1)由题意可得:,,
椭圆的方程为:.
(2)由题意知,设:,.
由消去得:,
解得:或(舍去),,
,同理可得:.
i:当时,直线斜率存在,
,
,直线过定点.
ii:当时,直线斜率不存在,直线方程为:,也过定点,
综上所述:直线过定点.
(3)设,由(2)知:
,
令,在单调递减,
∴当时,.
科目:高中数学 来源: 题型:
【题目】自贡农科所实地考察,研究发现某贫困村适合种植,两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
单价(元/公斤) | 18 | 20 | 23 | 25 | 29 |
药材的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:
(1)若药材的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材的单价;
(2)用上述频率分布直方图估计药材的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材还是药材?并说明理由.
参考公式:,(回归方程中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《最强大脑》是江苏卫视引进德国节目《Super Brain》而推出的大型科学竞技真人秀节目,节目筹备组透露挑选选手的方式:不但要对空间感知、照相式记忆进行考核,而且要让选手经过名校最权威的脑力测试,分以上才有机会入围,某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各名,然后对这名学生进行脑力测试,规定:分数不小于分为“入围学生”,分数小于分为“未入围学生”,已知男生入围人,女生未入围人,
(1)根据题意,填写下面的列联表,并根据列联表判断是否有以上的把握认为脑力测试后是否为“入围学生”与性别有关.
性别 | 入围人数 | 未入围人数 | 总计 |
男生 | 24 | ||
女生 | 80 | ||
总计 |
(2)用分层抽样的方法从“入围学生”中随机抽取名学生.
(ⅰ)求这名学生中女生的人数;
(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这名学生中女生测试分数的平均分的最小值.
附:,其中
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,四个点,,,中有3个点在椭圆:上.
(1)求椭圆的标准方程;
(2)过原点的直线与椭圆交于,两点(,不是椭圆的顶点),点在椭圆上,且,直线与轴、轴分别交于、两点,设直线,的斜率分别为,,证明:存在常数使得,并求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比.
(1)设圆求过(2,0)的直线关于圆的距离比的直线方程;
(2)若圆与轴相切于点(0,3)且直线= 关于圆的距离比,求此圆的的方程;
(3)是否存在点,使过的任意两条互相垂直的直线分别关于相应两圆的距离比始终相等?若存在,求出相应的点点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“水是生命之源”,但是据科学界统计可用淡水资源仅占地球储水总量的,全世界近人口受到水荒的威胁.某市为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨):一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的值;
(2)设该市有60万居民,估计全市居民中月均用水量不低于2.5吨的人数,并说明理由;
(3)若该市政府希望使的居民每月的用水不按议价收费,估计的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)
(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数,近似为样本方差.
(ⅰ)利用该正态分布,求;
(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求.
附:.若,则,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com