【题目】已知a>b>1,若logab+logba= ,ab=ba , 则由a,b,3b,b2 , a﹣2b构成的包含元素最多的集合的子集个数是( )
A.32
B.16
C.8
D.4
【答案】C
【解析】解:设t=logba,由a>b>1知t>1,
代入logab+logba=t+ = ,
即3t2﹣10t+3=0,解得t=3或t= (舍去),
所以logba=3,即a=b3 ,
因为ab=ba , 所以b3b=ba , 则a=3b=b3 ,
解得b= ,a=3 ,
a,b,3b,b2 , a﹣2b分别为:3 ; ;3 ;3; ;
组成集合{ ,3,3 }.
它的子集个数为:23=8.
故选:C.
【考点精析】解答此题的关键在于理解子集与真子集的相关知识,掌握任何一个集合是它本身的子集;n个元素的子集有2n个,n个元素的真子集有2n -1个,n个元素的非空真子集有2n-2个,以及对对数的运算性质的理解,了解①加法:②减法:③数乘:④⑤.
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①经过定点P0(x0 , y0)的直线都可以用方程y﹣y0=k(x﹣x0)表示;
②经过定点A(0,b)的直线都可以用方程y=kx+b表示;
③不经过原点的直线都可以用方程 + =1表示;
④经过任意两个不同的 点P1(x1 , y1)、P2(x2 , y2)的直线都可以用方程(y﹣y1)(x2﹣x1)=(x﹣x1)(y2﹣y1)表示;
其中真命题的个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数.
(1)当时,求函数的定义域;
(2)若判断的奇偶性;
(3)是否存在实数使函数在[2,3]递增,并且最大值为1,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+lg +x)的定义域是R.
(1)判断f(x)在R上的单调性,并证明;
(2)若不等式f(m3x)+f(3x﹣9x﹣4)<0对任意x∈R恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域是(0,+∞),且对任意的正实数x,y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且x>1时,f(x)>0.
(1)求f( )的值;
(2)判断y=f(x)在(0,+∞)上的单调性,并给出你的证明;
(3)解不等式f(x2)>f(8x﹣6)﹣1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com