精英家教网 > 高中数学 > 题目详情
17.若cos2x=2cos(-x)+3=t,则t等于1.

分析 由条件利用二倍角公式,余弦函数的值域,求得cosx的值,可得t的值.

解答 解:若cos2x=2cos(-x)+3=t,即 2cos2x-1=2cosx+3=t,
∴cos2x-cosx-2=0,求得cosx=-1,或cosx=-2(舍去),
则t=2cosx+3=1,
故答案为:1.

点评 本题主要考查二倍角公式,余弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,若an>0,则有(  )
A.a6+a7>a4+a9B.a6+a7<a4+a9C.a6+a7≥a4+a9D.a6+a7≤a4+a9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.判断下列函数的奇偶性.
(1)y=sinx•tanx;
(2)y=$\frac{tanx}{1-tanx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l与平面α同时垂直于直线m,则直线l与平面α的位置关系是l?α或l∥α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知:$\overrightarrow{a}$=(-2,m),且|$\overrightarrow{a}$|=3,则m=$±\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知焦点在y轴上的双曲线,两焦点的距离为10,与y轴交于A,B两点,且|AB|=8.则双曲线的标准方程是(  )
A.$\frac{{x}^{2}}{25}$$-\frac{{y}^{2}}{16}$=1B.$\frac{{y}^{2}}{25}$$-\frac{{x}^{2}}{16}$=1C.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1D.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知log62=0.387,则log63=0.613.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求y=$\frac{sinx-2}{cosx-2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4$\sqrt{3}$,P为椭圆上异于A1,A2的点,PA1和PA2的斜率之积为-$\frac{1}{3}$.以M(-3,2)为圆心,r为半径的圆与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)若A,B两点关于原点对称,求圆M的方程;
(3)若点A的坐标为(0,2),求△ABM的面积.

查看答案和解析>>

同步练习册答案