精英家教网 > 高中数学 > 题目详情
已知函数)满足,且的导函数<,则<的解集为(     )
A.B.C.D.
D

试题分析:设
在R上是减函数的解集为
点评:求解抽象函数构成的不等式需要借助于函数单调性将抽象函数转化为具体函数,其间用到了不等式与函数间的转化,这种思路是不等式题目常用的转化方法
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)写出该函数的单调区间;
(2)若函数恰有3个不同零点,求实数的取值范围;
(3)若对所有恒成立,求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足对一切都有,且,当时有.
(1)求的值;
(2)判断并证明函数上的单调性;
(3)解不等式:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,求函数的单调区间和极值;
(Ⅱ)若在区间上是单调递减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的图象如图所示,且与轴相切于原点,若函数的极小值为-4.

(1)求的值;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在区间上单调递减,则实数的取值范围为          .

查看答案和解析>>

同步练习册答案