精英家教网 > 高中数学 > 题目详情
2.给出下列四个命题:
①已知m、n为直线,α为平面,$\left.\begin{array}{l}{m⊥α}\\{m⊥n}\end{array}\right\}$⇒n∥α
②已知m、n为直线,β为平面,$\left.\begin{array}{l}{m⊥β}\\{n⊥β}\end{array}\right\}$⇒m∥n;
③若关于x的不等式(ax-10)lg($\frac{a}{x}$)≤0对任意正实数x恒成立,则a的取值范围是{a|a=$\sqrt{10}$,a∈R};
④若a,b∈R,则$\frac{b}{a}$+$\frac{a}{b}$≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=2,其中正确的序号是②③.

分析 根据空间线面关系的几何特征和判定方法,可判断①②的真假;
根据已知可得a>0,且$\left\{\begin{array}{l}ax-10≥0\\ \frac{a}{x}≥1\end{array}\right.$或$\left\{\begin{array}{l}ax-10≤0\\ \frac{a}{x}≤1\end{array}\right.$恒成立,求出a的范围,可判断③;
根据基本不等式,可判断④.

解答 解:①已知m、n为直线,α为平面,$\left.\begin{array}{l}{m⊥α}\\{m⊥n}\end{array}\right\}$⇒n∥α,或n?α,故错误;
②已知m、n为直线,β为平面,由线面垂直的判定定理,可得:$\left.\begin{array}{l}{m⊥β}\\{n⊥β}\end{array}\right\}$⇒m∥n,故正确;
③若关于x的不等式(ax-10)lg($\frac{a}{x}$)≤0对任意正实数x恒成立,
则a>0,且$\left\{\begin{array}{l}ax-10≥0\\ \frac{a}{x}≥1\end{array}\right.$或$\left\{\begin{array}{l}ax-10≤0\\ \frac{a}{x}≤1\end{array}\right.$恒成立,
解得:a=$\sqrt{10}$,
则a的取值范围是{a|a=$\sqrt{10}$,a∈R},故正确;
④若a,b∈R,且a,b同号时,$\frac{b}{a}$+$\frac{a}{b}$≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=2,a,b异号时$\frac{b}{a}$+$\frac{a}{b}$≤-2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=-2,故错误;
故正确的命题的序号是:②③,
故答案为:②③

点评 本题以命题的真假判断为载体,考查了空间线面关系的判定,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知f(x)=x|x-a|-$\frac{1}{4}$,x∈R.
(1)a=1时,指出f(x)单调区间和奇偶性;
(2)a=1时,求y=f(2x)零点;
(3)对任何x∈[0,1],不等式f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若A-B=$\frac{π}{6}$,tanA-tanB=$\frac{2\sqrt{3}}{3}$,则cosA•cosB=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a∈R,已知命题p:2x2-3x+1≤0,q:x<a+1或x>a+$\frac{5}{4}$,若p是非q的必要而不充分条件,则实数a的取值范围为[-$\frac{1}{2}$,-$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若2xlog34=1,求4x+4-x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在一个三角形ABC中,若sin2B+sin2C+$\frac{1}{2}$cos2A=$\frac{1}{2}$+sinBsinC,求A的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有以下四个命题:①α∥β,a?α⇒a∥β;②α∥β,a∥α⇒a∥β;③α∥γ,β∥γ⇒α∥β;④α∥β,a?α,b?β⇒a∥b,其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有下列命题:
①函数y=cos(x+$\frac{π}{2}$)是偶函数;
②y=lg(sin($\frac{π}{4}$-x))的单调递增区间为(2kπ+$\frac{5π}{4}$,2kπ+$\frac{7π}{4}$],k∈Z;
③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{π}{4}$)图象的一条对称轴;
④函数y=sin(x+$\frac{π}{6}$)在(-$\frac{π}{2}$,$\frac{π}{3}$)上是单调增函数;
⑤点($\frac{π}{6}$,0)是函数y=tan(x+$\frac{π}{3}$)图象的对称中心;
⑥若f(sinx)=cos6x,则f(cos15°)=0.
其中正确命题的序号是③④⑤⑥.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简:$\frac{1}{x-1}$+$\frac{1}{x+1}$+$\frac{2x}{{x}^{2}+1}$+$\frac{4{x}^{3}}{{x}^{4}+1}$=$\frac{8{x}^{7}}{{x}^{8}-1}$.

查看答案和解析>>

同步练习册答案