精英家教网 > 高中数学 > 题目详情
2.已知P1、P2、…、P2014是抛物线y2=4x上的点,它们的横坐标依次为x1、x2、…、x2014,F是抛物线的焦点,若x1+x2+…+x2014=10,则|P1F|+|P2F|+…|P2014F|=2024.

分析 根据抛物线的定义得抛物线上的点到焦点的距离等于该点到准线的距离,因此求出抛物线的准线方程,结合题中数据加以计算,即可得到本题答案.

解答 解:∵抛物线y2=4x的焦点为F(1,0),准线为x=-1,
∴根据抛物线的定义,Pi(i=1,2,3,…,2014)到焦点的距离等于Pi到准线的距离,即|PiF|=xi+1,
可得|P1F|+|P2F|+…|P2014F|=(x1+1)+(x2+1)+…+(x2014+1)=(x1+x2+…+x2014)+2014,
∵x1+x2+…+x2014=10,
∴|P1F|+|P2F|+…|P2014F|=10+2014=2024.
故答案为:2024.

点评 本题给出抛物线上2014个点的横坐标之和,求它们到焦点的距离之和.着重考查了抛物线的定义、标准方程和简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知sin(x+$\frac{π}{4}$)=$\frac{1}{3}$,则cos(x+$\frac{3π}{4}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.改革开放以来,我国高等教育事业有了迅速发展.这里我们得到了某省从1990~2000年18~24岁的青年人每年考入大学的百分比.我们把农村、县镇和城市分开统计.为了便于计算,把1990年编号为0,1991年编号为1…2000年编号为10.如果把每年考入大学的百分比作为因变量,把年份从0到10作为自变量进行回归分析,可得到下面三条回归直线:
城市:$\stackrel{∧}{y}$=2.84x+9.50
县镇:$\stackrel{∧}{y}$=2.32x+6.76;
农村:$\stackrel{∧}{y}$=0.42x+1.80;
(1)在同一个坐标系内作出三条回归直线.
(2)对于农村青年来讲,系数等于0.42意味着什么?
(3)在这一阶段,三个组哪一个的大学入学率年增长最快?
(4)请查阅我国人口分布的有关资料,选择一个高等教育发展上有代表性的省,以这个省的大学入学率作为样本,说明我国在1991~2000年10年间大学入学率的总体发展情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足下列条件,求其数列的通项公式an
(1)a1=0,an+1=an+(2n-1);
(2)a1=1,an+1=2Sn
(3)a1=5,an=2an-1+3(n≥2);
(4)Sn=3+2n
(5)a1=1,nan+1-(n+1)an=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线为y=-12x.
(1)求f(x)的解析式;
(2)求f(x)在[-3,1]上的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某品牌电视专卖店,在“五一”期间设计一项有奖促销活动:每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:
随机数组的特征3个数字均相同恰有2个数字相同其余情况
奖金(单位:元)5002000
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,产生20组随机数组,每组3个数,试验结果如下所示:
975,146,858,513,277,645,903,756,111,783,
834,527,060,089,221,368,054,669,863,175.
(Ⅰ)请根据以上模拟数据估计:若活动期间商家卖出100台电视应付出奖金多少元?
(Ⅱ)在以上模拟数据的前5组数中,随机抽取2组数,试写出所有的基本事件,并求至少有一组获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正项数列{an}满足ann+nan-1=0(n∈N*).
(1)求a1,a2
(2)判断函数f(x)=xn+nx-1,x>0的单调性;
(3)求证:0<an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知正四棱锥S-ABCD中,SA=2$\sqrt{3}$,那么当该棱锥的体积最大时,它的高为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,b=1,c=$\sqrt{3}$,A=$\frac{π}{4}$,则△ABC的面积是$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

同步练习册答案