精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=\left\{\begin{array}{l}{2^x}({x≤0})\\ \sqrt{x}({x>0})\end{array}\right.$若函数g(x)=f(x)-k(x-1)有且只有一个零点,则实数k的取值范围是(  )
A.(-∞,-1)B.(0,+∞)C.(-1,0)D.(-∞,-1)∪(0,+∞)

分析 原问题等价于函数y=f(x),与y=k(x-1)的图象的图象只有一个的交点,作出函数的图象,数形结合可得答案.

解答 解:函数g(x)=f(x)-k(x-1)有且只有一个零点,
∴f(x)-k(x-1)=0,
即:f(x)=k(x-1),
分别画出y=f(x),与y=k(x-1)的图象,如图所示:
而y=k(x-1)的图象恒过点(1,0),
当过点B时此时k=-1,有两个交点,
结合图象可得当k<-1或x>0时,函数g(x)=f(x)-k(x-1)有且只有一个零点,
故选:D

点评 本题考查函数的零点,转化为两函数图象的交点是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列选项中,说法正确的是(  )
A.若命题“p或q”为真命题,则命题p和命题q均为真命题
B.命题“若am2<bm2,则a<b”的逆命题是真命题
C.命题“若a=-b,则|a|=|b|”的否命题是真命题
D.命题“若$\left\{{\overrightarrow a,\overrightarrow b,\overrightarrow c}\right\}$为空间的一个基底,则$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow b+\overrightarrow c,\overrightarrow c+\overrightarrow a}\right\}$构成空间的另一个基底”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}的前n项和为Sn,且a3+a4+a5+a6+a7=20,则S9=(  )
A.18B.36C.60D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合Sn={1,2,3,…2n-1},若X是Sn的子集,把X的所有元素的乘积叫做X的容量(规定空集的容量为0),若X的容量为奇(偶)数,则称X为Sn的奇(偶)子集.其中Sn的奇子集的个数为(  )
A.$\frac{{{n^2}+n}}{2}$B.2n-1C.2nD.22n-1-2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,输出的s值为(  )
A.0B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-3x2,g(x)=ax2-4.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若对任意的x∈[0,+∞),都有f(x)≥g(x),求实数a的取值范围;
(Ⅲ)函数f(x)的图象是否为中心对称图形,如果是,请写出对称中心;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设0<x<$\frac{π}{2}$,记a=sinx,b=esinx,c=lnsinx,则a,b,c的大小关系为(  )
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,连接椭圆的四个顶点得到的菱形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)已知O为坐标原点,点P是圆C1:x2+y2=$\frac{5}{3}$上的点,过P作圆的切线交椭圆于M,N两点,求△OMN面积的最大值,并求出面积最大值时切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线y=x+k与曲线y=ex相切,则k的值为(  )
A.eB.2C.1D.0

查看答案和解析>>

同步练习册答案