精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,点 ,动点满足.

1)求动点的轨迹的方程;

(2)若直线与轨迹有且仅有一个公共点,且与直线相交于点,求证:以为直径的圆过定点.

【答案】(1);(2)见解析.

【解析】试题分析:(1)利用椭圆的定义判定轨迹为椭圆,并求出,a,b,从而写出标准方程;(2)为直径的圆过定点可转化为,利用向量可比较容易证明,先联立方程,消元得,可得 ,从而 根据数量积为0即可证明.

试题解析:

(1)解:因为

由椭圆定义可知动点的轨迹是以为焦点的椭圆

所以

所以椭圆的方程为.

2证明:由

消去

如图,设点依题意

∵直线与轨迹有且仅有一个公共点

可得.

此时

解得

可得

∴以为直径的圆过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商店销售某海鲜,统计了春节前后50天该海鲜的需求量,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为元.

(1)求商店日利润关于需求量的函数表达式;

(2)假设同组中的每个数据用该组区间的中点值代替.

①求这50天商店销售该海鲜日利润的平均数;

②估计日利润在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列三图中的多边形均为正多边形,是所在边的中点,双曲线均以图中的为焦点,设图示①②③中的双曲线的离心率分别为、则的大小关系为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)若,且对任意恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

是偶函数;②在区间单调递减;

个零点;④的最大值为.

其中所有正确结论的编号是(

A.①②④B.②④C.①④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:

①当时,存在实数m,使函数恰有5个不同的零点;

②若,函数的零点不超过4个,则

③对,函数恰有4个不同的零点,且这4个零点可以组成等差数列.

其中,正确命题的序号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)设,若对任意,且,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,且当时,成立,若,则abc的大小关系是()

A. aB. C. D. c

查看答案和解析>>

同步练习册答案