精英家教网 > 高中数学 > 题目详情
函数f(x)=与函数g(x)=|x|在区间(-∞,0)上的单调性为( )
A.都是增函数
B.都是减函数
C.f(x)是增函数,g(x)是减函数
D.f(x)是减函数,g(x)是增函数
【答案】分析:函数g(x)=|x|为偶函数,图象关于y轴对称,在区间(0,+∞)上为减函数,可判在(-∞,0)上的单调性.
解答:解:f(x)=在x∈(-∞,0)上为减函数,g(x)=log(-x)在(-∞,0)上为增函数.
故选D
点评:本题考查函数的单调性问题,属基本题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx与函数g(x)=x+
1
ax
,(x>0)
均在x=x0时取得最小值.
(I)求实数a的值;
(II)记h(x)=f(x)-g(x),
 
 
α
表示函数h(x)的所有极值点之和,证明:
(i)
1
e
是函数h(x)的一个极大值点(e为自然对数的底数,e≈2.71828…);
(ii)∑α>
15
14

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省盐城中学高二(上)期末数学试卷(解析版) 题型:解答题

已知函数f(x)=lnx,,记h(x)=f(x)-g(x).
(1)若a=0,且h(x)<0在(0,+∞)上恒成立,求实数b的取值范围;
(2)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)若a≠0,设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,请判断C1在点M处的切线与C2在点N处的切线能否平行,并说明你的理由.

查看答案和解析>>

同步练习册答案